See The Ball, Be The Ball - Vision and Sports
/
The whistle blows and Shaq goes to the line again after being fouled on purpose for the fourth time. And, again, we watch as he takes that awkward stance, looks at the basket and then clanks one of the back of the rim. We wonder how hard this can be... just aim and shoot! Isn't it that simple? Well, not exactly. In our introduction to this series I mentioned the research of Dr. Joan Vickers and her concept of the "Quiet Eye". In her book, Perception, Cognition and Decision Training, she describes this visual targeting pathway:
"...the visual pathway begins when information is registered on the eye's retina by the focal and ambient systems, then travels to the back of the head along the optic nerve and radiates to the occipital cortex, where visual information is registered as billions of features. These then race in parallel fashion both to the top of the head to the parietal cortex (dorsal) and along the sides of the head to the temporal (ventral) areas. There is an integration of information in the somatosensory cortex as the information goes to the frontal cortex, where the goals and intentions reside and plans are formulated for the specific event that is occurring. The flow of information then goes to the premotor and motor cortex at the top of the head before going down the spinal cord to the effectors." P.26
This same process repeats constantly during any athletic event and it is the most critical determinant of the outcome of the game. Just think about the types of visual work that needs to be done by an athlete (as defined by Dr. Vickers):
1. Targeting Tasks - being able to fixate on a target, fixed or moving, to be able to throw, kick or send an object towards it. (i.e. Shooting or passing a baseball, football, basketball, soccer ball, hockey puck, etc.)
2. Interceptive Timing Tasks - being able to recognize, track and finally control an object as it comes at you (aka "catching")
3. Tactical Decision Making Tasks - being able to take in an environmental scan of the field/court and recognize patterns of all the moving objects (i.e. a quarterback scanning his receivers and choosing the best option for a pass).
All of these scenarios require the athlete to focus or "gaze" on the right points in the environment and ignore the rest of the scene. Dr. Vickers' work has been to observe athletes of different skill levels, expert and non-expert, and define the "best practices" of visual control so that the non-expert athletes can be coached to better performance. Her research lab uses "eye-trackers" (see photo) to monitor the focus and gaze of the athlete's pupils as they perform their skills.
For example, she has found that expert baseball hitters focus on the release point of the ball exclusively, rather than random fixations on the pitcher's arm, head, jersey, etc. She found that expert golf putters focus on a specific point on the cup, then a specific point on the back of the ball and remain fixated on the point on the ball after the ball has left the putter blade.
Novices allow their gaze to wander from the ball to the hole, without a very specific focal point on either the cup or the ball. The term "Quiet Eye" comes from these observations that expert performers have consciously chosen points in their space to focus on rather than allowing their eyes to wander and fixate on multiple points (i.e. a "noisy" eye).
So, why does the Quiet Eye work? When we fixate on key points in our field of vision, how does this help our neuromuscular systems perform better? The subconscious part of our brain may be recognizing a pattern that we have seen and experienced before and directing our movements based on this information. Some have called this "muscle memory", meaning our brain has learned through repetition and practice how to throw a ball to a moving receiver at that distance and speed, and so, when presented with a similar scenario, knows what to do. Think about when you shoot a jump shot and sometimes you get that sensation, as soon as it leaves your hand, that the ball is going in. Your brain may be telling you that, based on past experience, when you've executed the same aim and same muscle movement then the ball has gone in.
This takes us back to the discussion we had in our previous post on baseball fielding regarding theories of perception-action combinations. The Information Processing model claims that we perceive the environment first through our senses, primarily our vision. Then, we access our memory to find the rules, suggestions and knowledge that we have gained from past experiences and these memories guide our action in the moment.
The Ecological Psychology model removes the memory access step and claims that our perception of the environment leads directly to our actions, as there is not enough time to access our lessons. If that is true, then how does the Quiet Eye help us? It seems the Quiet Eye is what we need to connect the current scenario (standing on the free throw line looking at the basket) with our lessons learned from the past (how we made this shot hundreds of times before). Research continues on this question and I'm sure we'll come back to this in future posts.
Next time, I will take a look at Dr. Vickers' "Decision Training Model", which builds on the Quiet Eye theory to train athletes to improve their tactical in-game decision making. We will look at the athletes who are known as having good "vision of the field" and how to raise everyone's game to that level.
"...the visual pathway begins when information is registered on the eye's retina by the focal and ambient systems, then travels to the back of the head along the optic nerve and radiates to the occipital cortex, where visual information is registered as billions of features. These then race in parallel fashion both to the top of the head to the parietal cortex (dorsal) and along the sides of the head to the temporal (ventral) areas. There is an integration of information in the somatosensory cortex as the information goes to the frontal cortex, where the goals and intentions reside and plans are formulated for the specific event that is occurring. The flow of information then goes to the premotor and motor cortex at the top of the head before going down the spinal cord to the effectors." P.26
This same process repeats constantly during any athletic event and it is the most critical determinant of the outcome of the game. Just think about the types of visual work that needs to be done by an athlete (as defined by Dr. Vickers):
1. Targeting Tasks - being able to fixate on a target, fixed or moving, to be able to throw, kick or send an object towards it. (i.e. Shooting or passing a baseball, football, basketball, soccer ball, hockey puck, etc.)
2. Interceptive Timing Tasks - being able to recognize, track and finally control an object as it comes at you (aka "catching")
3. Tactical Decision Making Tasks - being able to take in an environmental scan of the field/court and recognize patterns of all the moving objects (i.e. a quarterback scanning his receivers and choosing the best option for a pass).
All of these scenarios require the athlete to focus or "gaze" on the right points in the environment and ignore the rest of the scene. Dr. Vickers' work has been to observe athletes of different skill levels, expert and non-expert, and define the "best practices" of visual control so that the non-expert athletes can be coached to better performance. Her research lab uses "eye-trackers" (see photo) to monitor the focus and gaze of the athlete's pupils as they perform their skills.
For example, she has found that expert baseball hitters focus on the release point of the ball exclusively, rather than random fixations on the pitcher's arm, head, jersey, etc. She found that expert golf putters focus on a specific point on the cup, then a specific point on the back of the ball and remain fixated on the point on the ball after the ball has left the putter blade.
Novices allow their gaze to wander from the ball to the hole, without a very specific focal point on either the cup or the ball. The term "Quiet Eye" comes from these observations that expert performers have consciously chosen points in their space to focus on rather than allowing their eyes to wander and fixate on multiple points (i.e. a "noisy" eye).
So, why does the Quiet Eye work? When we fixate on key points in our field of vision, how does this help our neuromuscular systems perform better? The subconscious part of our brain may be recognizing a pattern that we have seen and experienced before and directing our movements based on this information. Some have called this "muscle memory", meaning our brain has learned through repetition and practice how to throw a ball to a moving receiver at that distance and speed, and so, when presented with a similar scenario, knows what to do. Think about when you shoot a jump shot and sometimes you get that sensation, as soon as it leaves your hand, that the ball is going in. Your brain may be telling you that, based on past experience, when you've executed the same aim and same muscle movement then the ball has gone in.
This takes us back to the discussion we had in our previous post on baseball fielding regarding theories of perception-action combinations. The Information Processing model claims that we perceive the environment first through our senses, primarily our vision. Then, we access our memory to find the rules, suggestions and knowledge that we have gained from past experiences and these memories guide our action in the moment.
The Ecological Psychology model removes the memory access step and claims that our perception of the environment leads directly to our actions, as there is not enough time to access our lessons. If that is true, then how does the Quiet Eye help us? It seems the Quiet Eye is what we need to connect the current scenario (standing on the free throw line looking at the basket) with our lessons learned from the past (how we made this shot hundreds of times before). Research continues on this question and I'm sure we'll come back to this in future posts.
Next time, I will take a look at Dr. Vickers' "Decision Training Model", which builds on the Quiet Eye theory to train athletes to improve their tactical in-game decision making. We will look at the athletes who are known as having good "vision of the field" and how to raise everyone's game to that level.