Why Young Athletes Should Play Super Mario 3D Instead Of Angry Birds

Why Young Athletes Should Play Super Mario 3D Instead Of Angry Birds

While there is nothing wrong with playing outside, the claim that video games have no redeeming value is starting to be refuted by science. The latest example is a study by researchers at the University of California-Irvine that found that playing 3D video games actually improved memories in college students.

While a number of brain training software apps have popped up over the last few years, they don’t yet have a substantial base of research showing that their games directly transfer to real life improvements. Most of these apps try to isolate specific cognitive skills, like memory, attention, decision-making or reaction time, within their games to train just one skill at a time.

However, the action-oriented, 3D first-person view of games like Call of Duty, Super Mario 3D World and Halo require the user to become fully immersed in the environment, mimicking the real world that users go back to after playing.

Read More

The Semantic Spaces Of An Athlete's Brain


Playing different sports is rather redundant.  Think about the motor skills and objects of, say, hockey versus soccer.  Players on two teams try to keep control of the puck/ball and put it past the opposing keeper into the goal.  Tennis, badminton and volleyball share the concept of hitting an object over a net at an opponent.  Football and rugby both need to advance a ball across a goal line.  There are similar objects such as a ball, a goal and the field of play and movements like jumping and running.

An athlete’s brain needs to learn these shared concepts early on to be able to navigate the tactics and motor skills required for different sports. Now, neuroscientists may have discovered how our brains organize this overlapping information so we don’t need to relearn the basics of each new sport.
Think about when you started driving.  While you may have been taught in one particular car, you learned the more general concepts of driving and how to identify the common objects found in dozens of vehicles.  Within seconds of sitting in a different car, you can recognize the steering wheel, ignition switch, pedals, lights, not to mention the basic mechanical functions of making it move.
Neuroscience has traditionally explained this ability to recognize objects by localizing it only to the visual cortex, a specific area of the brain.  Now, neuroresearcher Alex Huth of the University of California – Berkeley and his team have discovered that these different categories of objects are actually represented over a larger overlapping space in the brain in the somatosensory and frontal cortices covering almost 20% of the brain.
From the same visual system modeling lab that brought us a mind-reading computer last year, Huth used a similar technique of watching the brains of five researcher volunteers while they watched two hours of movie trailers.  Using fMRI scanning, the roughly 30,000 locations, also known as voxels, in the cortex were recorded while seeing over 1,700 different categories of objects and actions from the clips.
By matching the electrical pattern in the subjects’ brains with the scenes they were watching, a “semantic space” map was created showing which areas of the brain were active when seeing certain objects or actions.  As seen in the image above, categories that light up the same pattern in the brain are colored the same.  For example, focus on the middle of this image and you’ll see a green section that identifies human actors, including athletes.  Each small leaf on each branch represents one of the 1,700 different object or action types, which is not an exhaustive list of things in our world but a good cross section.
“Our methods open a door that will quickly lead to a more complete and detailed understanding of how the brain is organized. Already, our online brain viewer appears to provide the most detailed look ever at the visual function and organization of a single human brain,” said Huth.
Indeed, that online brain viewer is a fascinating tool.  By choosing an object such as “athlete” or an action such as “kicking” on one side of the viewer, you can see the corresponding layout of brain topology that is used to visualize it.
“Using the semantic space as a visualization tool, we immediately saw that categories are represented in these incredibly intricate maps that cover much more of the brain than we expected,” Huth said.
The research is published in the journal Neuron.
By studying the semantic map, we can see the shared properties of athletic endeavours.  The athlete cluster includes “ballplayer”, “skater” and “climber.” Interestingly, a cluster called “move self”, (including actions such as reach, jump and grab), uses a separate brain network then a more general grouping called “move” (including actions of pull, drop and reach).  From a skill practice perspective, the idea of a concept neighborhood makes sense as other research has shown the transferability of movements and logic from one sport to another.
In case you were wondering, vehicles do have their own semantic group including everything from a moped to a pickup to a locomotive.

Euro 2012: Cognitive Research Links Brain Function To Soccer Success

During the upcoming Euro 2012 tournament, you will often hear coaches and commentators refer to an athlete’s ability to “see the field” or be a play-maker.  Rookies at the next level can’t wait for the game to “slow down” so their brains can process all of the moving pieces.

What exactly is this so-called game intelligence and court vision?  Can it be recognized and developed in younger players?  For the first time, neuroscientists at Sweden’s Karolinska Institutet have found a link between our brain’s “executive functions” and sports success.

When in the middle of a heated game on the field or court, our brains are accomplishing the ultimate in multitasking.  Moving, anticipating, strategizing, reacting and performing requires an enormous amount of brain activity and the athletes who can process information faster often win.
In the everyday world, these types of activities, including planning, problem solving, verbal reasoning, and monitoring of our actions, have been called “executive functions.”  They are called into action when we face non-standard situations or problems where our automatic brain responses won’t work.  Neuroimaging studies have shown this activity happens in the prefrontal cortex of our brains. In ever-changing game situations, those abilities are often used and players need to adapt and be creative on short notice.

“Our brains have specific systems that process information in just this manner, and we have validated methods within cognitive research to measure how well the executive functions work in an individual,” says Dr Predrag Petrovic, the lead researcher in the study.

One of these standardized methods is the Delis-Kaplan executive functions system (D-KEFS) that consists of a series of tests of both verbal and non-verbal skills.  Petrovic and his team gave several of these tests to 57 elite soccer players from Sweden’s highest professional league, Allsvenskan, and the league just below known as Division 1.  After comparing the results, they found that the elite players performed significantly higher than a control group of non-players and the Allsvenskan players also outperformed the Division 1 players.

As in any sport, it’s the on-field performance that matters.  So, the researchers followed the professional players for two seasons and gathered statistics on goals and assists for each player.  There was a clear correlation between higher executive function test results and the ability to create goals.
Their study has been published in the online science journal PLoSONE.

Previous research had used sport-specific tests to measure individual abilities such as focus and attention.  Petrovic’s work was the first to link general problem solving ability with elite performance.

“We can imagine a situation in which cognitive tests of this type become a tool to develop new, successful soccer players. We need to study whether it is also possible to improve the executive functions through training, such that the improvement is expressed on the field. But there is probably a hereditary component, and a component that can be developed by training,” says Torbjörn Vestberg, psychologist and a member of the research group that carried out the study.

As Vestberg points out, this is exciting news for coaches and parents who can now link improvement in general problem-solving skills with their players’ sports performance.  Here at Axon, we are excited to be developing sport-specific cognitive training tools based on these foundational discoveries to help gain the edge over the competition.

Also follow me over at Axon Sports on Twitter and Facebook.