Michel Bruyninckx Trains Soccer Brains

Michel Bruyninckx
When describing what’s wrong with today’s youth soccer coaching, Michel Bruyninckx points to his head. “We need to stop thinking football is only a matter of the body,” the 59-year old Belgian Uefa A license coach and Standard Liège academy director recently told the BBC. “Skillfulness will only grow if we better understand the mental part of developing a player. Cognitive readiness, improved perception, better mastering of time and space in combination with perfect motor functioning.”

We’re not talking about dribbling around orange cones here.  Bruyninckx’s approach, which he dubs “brain centered learning” borrows heavily from the constructivist theory of education that involves a total immersion of the student in the learning activity.

In fact, there are three components to the related concept of “brain based” teaching:
  • Orchestra immersion – the idea that the student must be thrown into the pool of the learning experience so that they are fully immersed in the experience.
  • Relaxed alertness – a way of providing a challenging environment for the student but not have them stressed out by the chance of error.
  • Active processing – the means by which a student can constantly process information in different ways so that it is ingrained in his neural pathways, allowing them to consolidate and internalize the new material.
This “training from the neck up” approach is certainly different than the traditional emphasis on technical skills and physical fitness.  The brain seems to be the last frontier for sports training and others are starting to take note of it.

“I think that coaches either forget, or don’t even realise, that football is a hugely cognitive sport,” said the Uefa-A licence coach Kevin McGreskin in a recent Sports Illustrated story. “We’ve got to develop the players’ brains as well as their bodies but it’s much easier to see and measure the differences we make to a player’s physiology than we can with their cognitive attributes.”

At the Standard Liège facility outside of Brussels, Bruyninckx currently coaches about 68 players between the age of 12 and 19, who have been linked with first and second division Belgian clubs.  If there was any question if his methods are effective, about 25% of the 100 or so players that he has coached have turned pro.  By comparison, according to the Professional Footballers’ Association, of the 600 boys joining pro clubs at age 16, 500 are out of the game by age 21.



His training tactics try to force the players’ brains to constantly multitask so that in-game decision making can keep up with the pace of the game.  ”You have to present new activities that players are not used to doing. If you repeat exercises too much the brain thinks it knows the answers,” Bruyninckx added. “By constantly challenging the brain and making use of its plasticity you discover a world that you thought was never available. Once the brain picks up the challenge you create new connections and gives remarkable results.”

The geometry of the game is stressed through most training exercises.  Soccer is a game of constantly changing angles which need to be instantly analyzed and used before the opportunity closes.  Finding these angles has to be a reaction from hours of practice since there is no time to search during a game.

“Football is an angular game and needs training of perception — both peripheral sight and split vision,” said Bruyninckx. “Straight, vertical playing increases the danger of losing the ball. If a team continuously plays the balls at angles at a very high speed it will be quite impossible to recover the ball. The team rhythm will be so high that your opponent will never get into the match.”

Certainly, brain-centered learning faces enormous inertia among the coaching establishment.  Still, for those teams looking for the extra edge, the Bruyninckx method is gaining fans. “Michel’s methods and philosophy touch on the last frontier of developing world-class individuals on and off the field – the brain,” respected tennis coach Pete McCraw stated. “His methods transcend current learning frameworks and challenge traditional beliefs of athlete development in team sports.  It is pioneering work, better still it has broad applications across many sporting disciplines.”

Join Axon Potential on Twitter and Facebook

"Quiet Eye" Can Help A Surgeon's Patients And Golf Game

Surgeons now have a really good excuse to be out on the golf course.  Researchers have shown that the same training technique that will improve their putting can also improve their operating skills.  Dr Samuel Vine and Dr Mark Wilson, from Sport and Health Sciences at the University of Exeter, tested both elite golfers and surgical residents in two separate experiments using the gaze control technique known as the “Quiet Eye.”


First, they divided 22 elite golfers, (handicaps less than 6), into two groups after their baseline putting performance was measured.  The control group received no additional training while the experimental group participated in Quiet Eye (QE) training, a method first developed by Dr. Joan Vickers of the University of Calgary.  They were instructed to follow these steps:

1. Assume your stance and align the club so your gaze is on the back of the ball.
2. After setting up over the ball, fix your gaze on the hole. Fixations toward the hole should be made no more than 3 times.
3. The final fixation should be a QE on the back of the ball. The onset of the QE should occur before the stroke begins and last for 2 to 3 seconds.
4. No gaze should be directed to the clubhead during the backswing or foreswing.
5. The QE should remain on the green for 200 to 300 ms after the club contacts the ball.

While several earlier studies have shown the effectiveness of using QE in lab-based putting experiments, Vine and Wilson wanted to add two additional tests.  Would the golfers not only putt better in the lab, but also retain that performance under induced stress and in real world, golf course conditions?

The stress was added by telling the golfers that they were playing for a $50 prize as well as having their final scores posted at their home golf courses.  Even though the two groups showed no difference at the pre-training baseline testing, the QE group had significantly better putting scores than the control group in all three scenarios, including a decrease of two putts per round.

So, QE will help a surgeon on the green but what about in the operating room?  Knowing the positive results that athletes have seen, Vine and Wilson wondered if gaze control could help other professions, especially medicine.  Working in collaboration with the University of Hong Kong, the Royal Devon and Exeter NHS Foundation Trust and the Horizon training centre Torbay, the University of Exeter team brought thirty medical students together to find out....
Please click to continue reading at our partner, AxonPotential.com

Is This How Barcelona's Xavi Makes Decisions?

Xavi
When Xavi Hernandez receives the soccer ball in his offensive half of the field, the Barcelona maestro has a world of decisions waiting for him.  Hold the ball while his teammates arrive, make the quick through pass to a slicing Lionel Messi or move into position for a shot.

The question that decision researchers want to know is whether Xavi’s brain makes a choice based on the desired outcome (wait, pass or shoot) or the action necessary to achieve that goal.  Then, could his attitude towards improvement actually change his decision making ability?

Traditionally, the decision process was seen as consecutive steps; first choose what it is you want then choose an action to get you there.  However, a recent study from the Montreal Neurological Institute and Hospital at McGill University tells us that the brain uses two separate regions for these choices and that they are independent of each other.

“In this study we wanted to understand how the brain uses value information to make decisions between different actions, and between different objects,” said the study’s lead investigator Dr. Lesley Fellows, neurologist and lead researcher. “The surprising and novel finding is that in fact these two mechanisms of choice are independent of one another. There are distinct processes in the brain by which value information guides decisions, depending on whether the choice is between objects or between actions.”

Fellows’ team asked two groups of patients to play games where they chose between either two actions (moving a joystick) or two objects (decks of cards).  Each group had previous damage to different areas of the frontal lobes of their brains.  They could win or lose money based on the success of their choices.

Those that had damage to the orbitofrontal cortex could make correct decisions between different actions but struggled with choices about different objects.  Conversely, the other group, having sustained injury to the dorsal anterior cingulate cortex, had difficulty with action choices but excelled with object choices.

Dr. Fellows hopes this is just the beginning of more neuro-based studies of decision making. “Despite the ubiquity and importance of decision making, we have had, until now, a limited understanding of its basis in the brain,” said Fellows. “Psychologists, economists, and ecologists have studied decision making for decades, but it has only recently become a focus for neuroscientists.”

So, back to Xavi, it seems his decision-making may be a multi-tasking mission by his brain.  Of course, we may never be able to judge the accuracy of any soccer player’s decisions since the actual execution of the motor skills required has an critical effect on the outcome.  In other words, the decision to thread a pass through defenders may be an excellent choice but a number of variables could spoil it, including a mis-kick by Xavi, a sudden last movement by Messi or an alert defender intercepting the pass.

As rare as this may be, Xavi may actually consider his decision a mistake.  How he reacts to that mistake depends on his opinion of neuroplasticity, according to Jason S. Moser, assistant professor of psychology at Michigan State University.  ”One big difference between people who think intelligence is malleable and those who think intelligence is fixed is how they respond to mistakes,” claims Moser.

He hypothesized that those people, including athletes, who think that their intelligence is fixed often don’t make the extra effort required to learn from their mistakes as they think its futile.  However, if you believe your brain continues to evolve and change over your lifetime, then you will bounce back sooner from a mistake and work harder to improve.

To prove this, his team gave volunteers a memory task to remember the middle letter of a five letter sequence, like “MMMMM” or “NNMNN.”  The participants also wore an EEG skull cap that measured brain signals.  After we make a mistake, our brain sends two signals within a quarter second of each other; the first alerts us that we made a mistake while the second signal that indicates we’re aware of the mistake and are working on a solution.

For those in the test group that thought their brains could be improved, they not only did better on successive tests but the second signal from their brain was significantly bigger, indicating their brains were working harder to correct the mistake.  If Xavi feels he can only get better, he will process any mistake at a fundamentally different neuro level than other players.  ”This might help us understand why exactly the two types of individuals show different behaviors after mistakes,” concluded Moser.

Facing a player like Xavi who not only multitasks decisions but also believes he can learn from any mistakes must be a depressing thought for Barcelona’s opponents.

For more stories on the brain and sports, visit Axon Potential on Twitter and Facebook

Aaron Rodgers, Working Memory and 10,000 Hours Of Practice

Aaron Rodgers Assuming the Packers’ quarterback does not have super-human vision or a time machine, these comments must refer to his ability to recognize opposing defensive formations, adjust quickly to their movements and pick out an open receiver.  It is a skill that all young players would like to have and their coaches would like to teach.
Of course, the ongoing debate in the sports world is if great perceptual awareness and quick decision making are gifts you’re born with or ones you can develop with practice.  The extreme ends of that continuum seem illogical, that a player can excel with no practice or that anyone who practices enough can be a superstar.  Instead, the discussion has turned to the gray area in between looking for the right combination and the direction of causation between the two.
At the center of the debate for the last 20 years, Florida State psychology professor K. Anders Ericsson has held to a theory that enough deliberate practice, described as a focused activity meant to improve a specific skill, can make up for or even circumvent the lack of general, innate abilities.  His research has shown that about 10,000 hours of practice is the minimum required to rise to an expert level of most knowledge domains, including sports.
Now, in a new study published in Current Directions of Psychological Science, psychologists David Z. Hambrick of Michigan State University and Elizabeth J. Meinz of Southern Illinois University Edwardsville examined this interplay between basic abilities, like working memory capacity, and acquired knowledge learned through practice.  “We have been especially interested in the question of whether various forms of domain knowledge moderate the impact of basic cognitive abilities on performance,” the authors wrote.
Working memory is used in complex tasks that require holding information in the mind while also trying to reason or comprehend the environment.  Think of Rodgers remembering the pass routes of all of his receivers while processing the movements of eleven defenders around him.
Hambrick and Meinz wanted to find out if the working memory of domain experts, like Rodgers, has as much as an impact on their performance as their years of deliberate practice and learned knowledge of their specialized world.  Previous research has shown that a person’s working memory capacity is strongly correlated with abstract reasoning, problem solving, decision making, language comprehension, and complex learning.

After a great Aaron Rodgers performance, you will usually hear at least one of two phrases uttered by post-game football analysts, “he has a great ability to see the field,” or “the game has really slowed down for him.”








Back in 2002, Professor Hambrick tested this relationship using a baseball domain.  Participants were first tested on their overall baseball acumen and then completed a complex-scan task to test their working memory capacity.  Complex-scan tests combine information storing with information processing.  An example would be reading a series of sentences aloud while also remembering the last word of each sentence.
After the baseline tests, the volunteers listened to radio broadcasts of baseball games and were asked to remember the major events of the game and specific information about the players.  As expected, those who had a higher baseball IQ did better on the recall test.  However, working memory capacity also had a strong correlation with success. As Hambrick concluded, “Working-memory capacity was as important as a predictor of memory performance at high levels of domain knowledge as it was at low levels.”
In the current study, the domain shifted to piano playing while the results were similar.  Fifty-seven pianists with a wide range of lifetime deliberate practice hours, from 260 to over 31,000, were first given a complex-scan test to measure their working memory limits.  Then, they were given a musical piece that they had never seen before and asked to play it with no practice, called sight-reading.
As the authors reported, “Not surprisingly, we found that deliberate practice was a powerful predictor of sight-reading performance. In fact, it accounted for nearly 50% of the variance. However, we also found that working-memory capacity was a positive predictor of performance above and beyond deliberate practice.”
So, at least in the case of working memory, an ingrained ability does have some importance alongside the hours of practice.  Moreover, deliberate practice that also increases your working memory capacity should yield even better results.  Focused training on improving both the storage and processing of information seems to be the key to better performance.
Of course, for most football analysts, saying a quarterback can now “see the field better” is a little easier than saying “activation of domain knowledge by the familiar context did not reduce the effect of working memory capacity on performance.”