Brains Over Brawn In Sports

Sometimes, during my daily browsing of the Web for news and interesting angles on the sport science world, I get lucky and hit a home run.  I stumbled on this great May 2007 Wired article by Jennifer Kahn, Wayne Gretzky-Style 'Field Sense' May Be Teachable.  It ties together the people and themes of my last three posts, focusing on the concept of perception in sports.


Wayne Gretzky is often held up as the ultimate example of an athlete with average physical stature, who used his cognitive and perceptual skills to beat opponents.  Joining Gretzky in the "brains over brawn" Hall of Fame would be pitcher Greg Maddux, NBA guard Steve Nash and quarterback Joe Montana.  They were all told as teenagers that they didn't have the size to succeed in college or the pros, but they countered this by becoming master students of the game, constantly searching for visual cues that would give them the advantage of a fraction of second or the element of surprise.



Kahn's story focuses on two sport scientists that we have met before.  Peter Vint, sport technologist with the US Olympic team, who I highlighted in the post, Winning Olympic Gold With Sport Science,  comments on this, "In any sport, you come across these players.  They're not always the most physically talented, but they're by far the best. The way they see things that nobody else sees — it can seem almost supernatural. But I'm a scientist, so I want to know how the magic works."  So, Vint and his team continue to search not only for the secret to the magic, but how it can be taught.



Vint acknowledges the work of one of his fellow sport scientists, Damian Farrow, of the Australian Institute for Sport, who was part of the discussion roundtable mentioned in my post, Getting Sport Science Out Of The Lab And Onto The Field.


He is also fascinated with the perceptual abilities of elite athletes.  In his own sport, tennis, he wanted to know how expert players could return serves much better than novice players.  Similar to the research we looked at in an earlier post about tennis, Federer and Nadal Can See the Difference, Farrow designed an experiment that would try to identify the cues that players might need to instinctively estimate the speed and direction of a serve.  He had three groups of players, expert, non-expert but coached, and non-expert/non-coaced novices, wear ear plugs to block out the sound of the ball hitting the racquet as well as occlusion glasses that could block vision with the touch of an assistant's button.  

By changing the point of the serve at which the glasses would go black, and the players would be "blind", he could try to isolate the action of the server that the expert players might be tuned into that the novices were not.  The decisive point was immediately before impact between the racquet and the ball.  Arm and racquet position at that point seemed to let the expert players estimate the direction of the serve more accurately than the novices.


But Vint and Farrow are not satisfied just knowing what an expert knows.  They want to understand how to teach this skill to novices.  From his own competitive tennis playing days, Farrow remembers that if he consciously focused his mind on things like arm position, racquet angle, etc., he would be miss the serve as his reaction time would drop.  He understood that players need to not only learn the cues, but learn them to the point of "automaticity" through implicit learning.  

You may remember our discussion of implicit learning from the post, Teaching Tactics and Techniques in Sports.   Malcolm Gladwell, in his best-selling book, Blink, calls this implicit decision-making ability "thin slicing" and gives examples of how we can often make better decisions in the "blink" of an eye, rather than through long analysis.  Obviously, in sports, when only seconds or sub-seconds are allowed for decisions, this blink must be so well-trained that it is at the sub-conscious level.

For Vint and Farrow, the experiments continue, looking at each sport, but beyond the raw physical and technical skills that need to be taught but often times are the only skills that are taught.   

Understanding the cognitive side of the game will provide the edge when all else is equal.

Teaching Tactics and Techniques In Sports

You have probably seen both types of teams. Team A: players who are evenly spaced, calling out plays, staying in their positions only to watch them dribble the ball out of bounds, lose the pass, or shoot wildly at the goal. Team B: amazing ball control, skillful shooting and superior quickness, speed and agility but each player is a "do-it-yourselfer" since no one can remember a formation, strategy or position responsibility. Team A knows WHAT to do, but can't execute. Team B knows HOW to do it, but struggles with making good team play decisions. This is part of the ongoing balancing act of a coach. At the youth level, teaching technique first has been the tradition, followed by tactical training later and separately. More recently, there has been research on the efficiency of learning in sports and whether there is a third "mixed" option that yields better performance.


Earlier, we took an initial look at Dr. Joan Vickers' Decision Training model as an introduction to this discussion. In addition, Dr. Markus Raab of the Institute for Movement Sciences and Sport, University of Flensburg, Germany, (now of the Institute of Psychology, German Sport University in Cologne), took a look at four major models of teaching sports skills that agree that technical and tactical skills need to be combined for more effective long-term learning.Each of the four models vary in their treatment of learning along two different dimensions; implicit vs. explicit learning and domain-specific vs. domain-general environments. 


Types of Learning

Imagine two groups of boys playing baseball. The first group has gathered at the local ball diamond at the park with their bats, balls and gloves. No coaches, no parents, no umpires; just a group of friends playing an informal "pick-up" game of baseball. They may play by strict baseball rules, or they may improvise and make their own "home" rules, (no called strikes, no stealing, etc.). In the past, they may have had more formal coaching, but today is unstructured.


The second group is what we see much more often today. A team of players, wearing their practice uniforms are driven by their parents to team practice at a specific location and time to be handed off to the team coaches. The coaches have planned a 90 minute session that includes structured infield practice, then fly ball practice, then batting practice and finally some situational scrimmages. Rules are followed and coaching feedback is high. Both groups learn technical and tactical skills during their afternoon of baseball. They differ in the type of learning they experience.

The first group uses "implicit" learning while the second group uses "explicit" learning. Implicit learning is simply the lack of explicit teaching. It is "accidental" or "incidental" learning that soaks in during the course of our play. There is no coach teaching the first group, but they learn by their own trial and error and internalize the many if-then rules of technical and tactical skills. Explicit learning, on the other hand, is directed instruction from an expert who demonstrates proper technique or explains the tactic and the logic behind it.



An interesting test of whether a specific skill or piece of knowledge has been learned with implicit or explicit methods is to ask the athlete to describe or verbalize the details of the skill or sub-skill. If they cannot verbalize how they know what they know, it was most likely learned through implicit learning. However, if they can explain the team's attacking strategy for this game, for example, that most likely came from an explicit learning session with their coach.



Types of Domains

The other dimension that coaches could use in choosing the best teaching method is along the domain continuum. Some teaching methods work best to teach a skill that is specific to that sport's domain and the level of transferability to another sport is low. These methods are known as domain-specific. For more general skills that can be useful in several related sports, a method can be used known as domain-general.

Why would any coach choose a method that is not specific to their sport? There has been evidence that teaching at a more abstract level, using both implicit and explicit "play" can enhance future, more specific coaching. Also, remember our discussion about kids playing multiple sports.Based on these two dimensions, Dr. Raab looked at and summarized these four teaching models:
  • Teaching Games for Understanding (TGFU)
  • Decision Training (DT)
  • Ball School (Ball)
  • Situation Model of Anticipated Response consequences of Tactical training (SMART)
TGFU

The TGFU approach, (best described by Bunker, D.; Thorpe, R. (1982) A model for the teaching of games in the secondary school, Bulletin of Physical Education, 10, 9–16), is known for involving the athlete early in the "cognition" part of the game and combining it with the technical aspect of the game. Rather than learn "how-to" skills in a vacuum, TGFU argues that an athlete can tie the technical skill with the appropriate time and place to use it and in the context of a real game or a portion of the game.

This method falls into the explicit category of learning, as the purpose of the exercise is explained. However, the exercises themselves stress a more domain-general approach of more generic skills that can be transferred between related sports such as "invasion games" (soccer, football, rugby), "net games" (tennis, volleyball), "striking/fielding games" (baseball, cricket) and "target games" (golf, target shooting). 



Decision Training

The DT method, (best described by Vickers, J. N., Livingston, L. F., Umeris-Bohnert, S. & Holden, D. (1999) Decision training: the effects of complex instruction, variable practice and reduced delayed feedback on the acquisition and transfer of a motor skill, Journal of Sports Sciences, 17, 357–367), uses an explicit learning style but with a domain-specific approach. Please see my earlier post on Decision Training for details of the approach. 


Ball School

The Ball School approach, (best described by Kroger, C. & Roth, K. (1999) Ballschule: ein ABC fur Spielanfanger [Ball school: an ABC for game beginners] (Schorndorf, Hofmann), starts on the other end of both spectrums, in that it teaches generic domain-general skills using implicit learning. It emphasizes that training must be based on ability, playfullness, and skill-based. Matching the games to the group's abilities, while maintaining an unstructured "play" atmosphere will help teach generic skills like "hitting a target" or "avoiding defenders". 



SMART

Dr. Raab's own SMART model, (best described in Raab, M. (2003) Decision making in sports: implicit and explicit learning is affected by complexity of situation, International Journal of Sport and Exercise Psychology, 1, 406–433), blends implicit and explicit learning within a domain-specific environment. The idea is that different sports' environmental complexity may demand either an implicit or explicit learning method. Raab had previously shown that skills learned implicitly work best in sport enviroments with low complexity. Skills learned explicitly will work best in highly complex environments. Complexity is measured by the number of variables in the sport. So, a soccer field has many moving parts, each with its own variables. So, the bottom line is to use the learning strategy that fits the sport's inherent difficulty. So, learning how to choose from many different skill and tactical options would work best if matched with the right domain-specific environment.  



Bottom-Line for Coaches

What does all of this mean for the coach? That there are several different models of instruction and that one size does not fit all situations. Coaches need an arsenal of tools to use based on the specific goals of the training session. In reality, most sports demand both implicit and explicit learning, as well as skills that are specific to one domain, and some that can transfer across several sport domains. Flexibility in the approach taken goes back to the evidence based coaching example we gave last time. Keeping an open mind about coaching methods and options will produce better prepared athletes.



ResearchBlogging.org


(2007). Discussion. Physical Education & Sport Pedagogy, 12(1), 1-22. DOI: 10.1080/17408980601060184

Winning Olympic Gold With Sport Science

Its something that every coach and every athlete of every sport is searching for... the EDGE. That one training tip, equipment improvement, mental preparation or tactical insight that will tip the game towards them. The body of knowledge that exists today in each sport is assumed, with each competitor expected to at least be aware of the history, beliefs and traditions of their individual sport. But, if each team is starting with the same set of information then the team that takes the next step by applying new research and ideas will capture the edge.

To me, that is what sport science is all about. The goal is to improve sports performance by imagining, analyzing, experimenting, testing, documenting and training new methods to coaches and athletes.

You might have seen a great article in the 6/23 edition of USA Today; "In hunt for Olympic gold, techies are major players" by Jodi Upton. We meet Peter Vint, a "sport technologist" in the Performance Technology Division of the US Olympic Training Center in Colorado Springs, CO, whose job it is to find ways to win more gold medals. From the article; "The next revolution, Vint says, is breaking down the last secrets of elite athletes: response time, how they read the field and other players — everything that goes into the vision, perception and split-second decision-making of an athlete. 'We've always looked at that as mysterious, something that's unmeasurable and innate,' Vint says. 'But we think it can be taught.'"

Interestingly, Vint cites another pioneer in evidence-based sports coaching, Oakland A's general manager, Billy Beane. "We're becoming progressively more data-driven," Vint says of the center's training efforts. "We are trying to pursue what Sabermetrics and Billy Beane did for baseball, identifying factors that can truly influence performance." The radical concept that Beane created, as documented in the bestseller, "Moneyball" by Michael Lewis, is to stop searching for "the edge" in all the same places that everyone else is looking. Instead, he started from scratch with new logic about the objectives of the game of baseball itself and built metrics that gave new insight into the types of players and skill sets that he should acquire for his team.

If sport science is going to thrive and be accepted, it faces the challenge of inertia. The ideas and techniques that are the product of sport science can also be captured in the phrase, "evidence based coaching". Just as evidence based medicine has slowly found its place in the physician's exam room, the coaching profession is just beginning to trust the research. Traditionally, "belief based coaching" has been the philosophy favored in the clubhouse. Training drills, tactical plans, player selection and player development has been guided by ideas and concepts that have been handed down from one generation of coaches to the next. Most of these beliefs are valid and have been proven on the field through many years of trial and error. Subjecting these beliefs to scientific research may not produce conclusions any different than what coaching lore tells us. But, today's coaches and athletes see the competition creeping closer to them in all aspects, so they are now willing to at least listen to the scientists. Beane likens it to financial analysis and the stock market. The assumption is that all information is known by all. But, if someone can find a ratio or a statistic or make an industry insight that no one has considered, then they own the competitive advantage; at least until this new information is made public.

It takes time, though, to amass enough data to convince a head coach to change years of habits for the unknown. Reputations and championships are on the line, so the changes sometimes need to be implemented slowly. Vint describes the gradual process of converting U.S. hurdler Terrence Trammell and his coach to some of his ideas. "The relationship between the athletes and sports scientist is critical," Vint says. "But (for some), biomechanics has not yet provided useful enough suggestions."

There still is debate on evidence based coaching vs. belief based coaching. Here are two opposing opinions; evidence-based: "The Second Law of Thermodynamics" by Brent S. Rushall of San Diego State University
and belief-based: "Evidence Based vs. Belief Based Coaching" by Richard Todd of Webball.com. If you have a few minutes, please read each opinion and offer your take on this. After considering these opinions, Robert Robson, sport psychologist and management consultant, stated, "Sports coaching should absolutely be evidence-based, but any argument that places the sole source of evidence in the realm of the scientific method is, I would argue, naive and lacking in an understanding of the philosophical underpinnings of science."

Looking forward, I will dig a little deeper into this topic in the next week, so please check back or subscribe to Sports Are 80 Percent Mental.

Single Sport Kids - When To Specialize

So, your grade school son or daughter is a good athlete, playing multiple sports and having fun at all of them. Then, you hear the usual warning, either from coaches or other parents; "If you want your daughter to go anywhere in this sport, then its time to let the other sports go and commit her full-time to this one." The logic sounds reasonable. The more time spent on one sport, the better she will be at that sport, right? Well, when we look at the three pillars of our Sports Cognition Framework, motor skill competence, decision making ability, and positive mental state, the question becomes whether any of these would benefit from playing multiple sports, at least in the early years of an athlete (ages 3-12)? It seems obvious that specific technical motor skills, (i.e. soccer free kicks, baseball bunting, basketball free throws) need plenty of practice and that learning the skill of shooting free throws will not directly make you a better bunter. On the other end, learning how to maintain confidence, increase your focus, and manage your emotions are skills that should easily transfer from one sport to another. That leaves the development of tactical decision making ability as the unknown variable. Will a young athlete learn more about field tactics, positional play and pattern recognition from playing only their chosen sport or from playing multiple related sports?

Researchers at the University of Queensland, Australia learned from previous studies that for national team caliber players there is a correlation between the breadth of sport experiences they had as a child and the level of expertise they now have in a single sport. In fact, these studies show that there is an inverse relation between the amount of multi-sport exposure time and the additional sport-specific training to reach expert status. In plain English, the athletes that played several different (but related) sports as a child, were able to reach national "expert" level status faster than those that focused only one sport in grade school . Bruce Abernethy, Joseph Baker and Jean Cote designed an experiment to observe and measure if there was indeed a transfer of pattern recognition ability between related sports (i.e. team sports based on putting an object in a goal; hockey, soccer, basketball, etc.)

They recruited two group of athletes; nationally recognized experts in each of three sports (netball, basketball and field hockey) who had broad sports experiences as children and experienced but not expert level players in the same sports whose grade school sports exposure was much more limited (single sport athletes). (For those unfamiliar with netball, it is basically basketball with no backboards and few different rules.) The experiment showed each group a video segment of an actual game in each of the sports. When the segment ended the groups were asked to map out the positions and directions of each of the players on the field, first offense and then defense, as best they could remember from the video clip. The non-expert players were the control group, while the expert players were the experimental groups. First, all players were shown a netball clip and asked to respond. Second, all were shown a basketball clip and finally the hockey clip. The expectation of the researchers was that the netball players would score the highest after watching the netball clip (no surprise there), but also that the expert players of the other two sports would score higher than the non-expert players. The reasoning behind their theory was that since the expert players were exposed to many different sports as a child, there might be a significant transfer effect between sports in pattern recognition, and that this extra ability would serve them well in their chosen sport.

The results were as predicted. For each sport's test, the experts in that sport scored the highest, followed by the experts in the other sports, with the non-experts scoring the poorest in each sport. Their conclusion was that there was some generic learning of pattern recognition in team sports that was transferable. The takeaway from this study is that there is benefit to having kids play multiple sports and that this may shorten the time and training needed to excel in a single sport in the future.

So, go ahead and let your kids play as many sports as they want. Resist the temptation to "overtrain" in one sport too soon. Playing several sports certainly will not hurt their future development and will most likely give them time to find their true talents and their favorite sport.

ResearchBlogging.org
Source:
Abernethy, B., Baker, J., Côté, J. (2005). Transfer of pattern recall skills may contribute to the development of sport expertise. Applied Cognitive Psychology, 19(6), 705-718. DOI: 10.1002/acp.1102

Federer and Nadal Can See the Difference









Watching Roger Federer and Rafael Nadal battle it out in the French Open final and now again in the Wimbledon final, I started thinking more about the interceptive timing task requirements of each of their visuomotor systems... yeah, right. C'mon, I just needed a good opening line for this post.


However, other than a 120 mph tennis serve, take a second to think about all of the different sports that send an object flying at you at very high speeds that you not only have to see, but also estimate the speed of the object, the movement of the object and what you want to do with the object once it gets to you.



Some examples are:
- a hockey puck at a goalie (70-100 mph)
- a baseball pitch at a batter (70-100 mph)
- a soccer ball kicked at a keeper (60-90 mph)


Previously, we took a look at this in baseball and in soccer and also discussed the different types of visual skills in sports. There, we broke it down into three categories:

- Targeting tasks
- Interceptive timing tasks
- Tactical decision making tasks

The second category, interceptive timing tasks, deals with the examples above; stuff coming at you fast and you need to react. There are three levels of response that take an increasing level of brainpower.

First, there is a basic reaction, also known as optometric reaction. In other words, "see it and get out of the way". Next, there is a perceptual reaction, meaning you actually can identify the object coming at you and can put it in some context (i.e. that is a tennis ball coming at you and not a bird swooping out of the sky).

Finally, there is a cognitive reaction, meaning you know what is coming at you and you have a plan of what to do with it (i.e. return the ball with top-spin down the right line). This cognitive skill is usually sport-specific and learned over years of tactical training. Obviously, for professional tennis players, they are at the expert cognitive stage and have a plan for most shots. Federer's problem was that Nadal had better plans.

But, in order to reach that cognitive stage, they first need to have excellent optometric and perceptual skills. Can those skills be trained? Or are the best tennis players born with naturally better abilities? Did their training make them better tennis players or are they better players because of some natural skills?


Leila Overney and her team at the Brain Mind Institute of Ecole Polytechnique Federale de Lausanne (EPFL) recently studied whether expert tennis players have better visual perception abilities than other athletes and non-tennis players. Typically, motor skill research compares experts to non-experts and tries to deduce what the experts are doing differently to excel.

In this study, an additional category was added. Overney wanted to see if the perceptual skills of the tennis players were significantly more advanced than athletes of a similar fitness level, (in this case triathletes), to eliminate the variable of "fitness", and also more advanced than novice tennis players (the typical comparison). To eliminate the cognitive knowledge difference between the groups, she used seven non-sport specific visual tests. Please see the actual study for details of all the tests.

The bottom line of the results was that certain motion detection and speed discrimination skills were better in the tennis players (in other words, being able to track a ball coming at you and its movement side to side).


So, the expert tennis players were better at tracking balls coming at them than triathletes and non-tennis players.... seems pretty obvious(!) But, these results are a first step to answering the question of "can these skills be trained"? We see that there is, indeed, a difference in ability level between expert players and athletes that are in similar shape and competitive spirit. Now, the question becomes, "how did these tennis players acquire a higher level of perception skill"? Was it "nature or nurture", "genetically gifted or trained through practice"?


Source: Overney, L.S., Blanke, O., Herzog, M.H., Burr, D.C. (2008). Enhanced Temporal but Not Attentional Processing in Expert Tennis Players. PLoS ONE, 3(6), e2380. DOI: 10.1371/journal.pone.0002380

The Coach's Curse - Mental Mistakes



"Donadoni rues Italian 'mistakes' against Dutch"

"Mental errors cost Demons in regional quarterfinal"

"Mental mistakes doom Rays in loss to Cardinals"

 

Every day, there is always a new variety of stories linked to the phrase, "mental mistakes".  Either the writer recaps a game, calling out the mistakes or a coach or player claims that mistakes were made. It has become sort of a throwaway phrase, "...we made a lot of mental mistakes out there today, that we need to avoid if we want to get to the playoffs..." The million dollar question then is HOW to reduce these mental mistakes. And, to answer that, we need to define WHAT is a mental mistake?

In a previous post, I introduced the "Sports Cognition Framework", which is a trio of elements needed for success in sports. These three elements are:

- decision-making ability (knowing what to do)

- motor skill competence (being physically able to do it)

- po
sitive mental state (being motivated and confident to do it)

Most of the time, a mental mistake is thought of as a breakdown of decision-making ability. The center fielder throws to the wrong base, the tight end runs the wrong route, or the defender forgets to mark his man, etc. These scenarios describe poor decisions or even memory lapses during the stress of the game. They are not necessarily the lack of skill to execute a play or the lack of confidence or motivation to want to do the right thing. It is a recognition, in hindsight, that the best option was not chosen. In addition to glaring nega
tive plays, there are also missed opportunities on the field (i.e. taking a contested shot on goal, instead of passing to the open teammate).

So, back to the payoff question: HOW do we reduce mental mistakes and poor decisions? Just as we practice physical skills to improve our ability to throw, catch, shoot, run, etc., we need to practice making decisions using a a training system that directly exposes the athlete to these scenarios. Dr. Joan Vickers, who we met during our discussion of the Quiet Eye, has created a new system which she calls the "Decision-Training Model", and is the focus of the second half of her book, "Perception, Cognition, and Decision Training". As opposed to traditional training methods that separate skill training from tactical decision making training, the Decision-Training model (D-T) forces the athlete to couple her skill learning with the appropriate tactical awareness of when to use it.

So, instead of an "easy-first" breakdown of a skill, and then build it up step by step, D-T begins with a "hard-first" approach putting the "technique within tactics" demanding a higher cognitive effort right up front. The theory behind D-T is that the coach is not on the field with the player during competition, so the player must learn to rely on their own blended combination of skill and game awareness. Research from Vickers and others shows that D-T provides a more lasting retention of knowledge, while more traditional bottom-up training with heavy coach feedback delivers a stronger short-term performance gain, but that success in practice does not often translate later in games. Practice and training need to mirror game situations as often and as completely as the real thing.

There are three major steps to Decision-Training (p. 167):

1. Identify a decision the athlete has to make in a game, using one of the seven cognitive skills (anticipation, attention, focus/concentration, pattern recognition, memory, problem solving and decision making)

2. Create a drill(s) that trains that decision using one of the seven cognitive triggers (object cues, location cues, Quiet Eye, reaction-time cues, memory cues, kinesthetic cues, self-coaching cues)

3. Use one or more of the seven decision tools in the design of the drill (variable practice, random practice, bandwidth feedback, questioning, video feedback, hard-first instruction, external focus of instruction)

This post was just to serve as an introduction to D-T. Dr. Vickers and her team at University of Calgary offer full courses for coaches to learn D-T and apply it in their sport. Combined with the visual cues of the playing environment provided by the Quiet Eye gaze control, D-T seems to offer a better tactical training option for coaches and athletes. Coming up, we will continue the discussion of decision-making in sports with a look at some other current research. Please give me your thoughts on D-T and the whole topic of mental mistakes!

See The Ball, Be The Ball - Vision and Sports

The whistle blows and Shaq goes to the line again after being fouled on purpose for the fourth time. And, again, we watch as he takes that awkward stance, looks at the basket and then clanks one of the back of the rim. We wonder how hard this can be... just aim and shoot! Isn't it that simple? Well, not exactly. In our introduction to this series I mentioned the research of Dr. Joan Vickers and her concept of the "Quiet Eye". In her book, Perception, Cognition and Decision Training, she describes this visual targeting pathway:


"...the visual pathway begins when information is registered on the eye's retina by the focal and ambient systems, then travels to the back of the head along the optic nerve and radiates to the occipital cortex, where visual information is registered as billions of features. These then race in parallel fashion both to the top of the head to the parietal cortex (dorsal) and along the sides of the head to the temporal (ventral) areas. There is an integration of information in the somatosensory cortex as the information goes to the frontal cortex, where the goals and intentions reside and plans are formulated for the specific event that is occurring. The flow of information then goes to the premotor and motor cortex at the top of the head before going down the spinal cord to the effectors." P.26


This same process repeats constantly during any athletic event and it is the most critical determinant of the outcome of the game. Just think about the types of visual work that needs to be done by an athlete (as defined by Dr. Vickers):

1. Targeting Tasks - being able to fixate on a target, fixed or moving, to be able to throw, kick or send an object towards it. (i.e. Shooting or passing a baseball, football, basketball, soccer ball, hockey puck, etc.)

2. Interceptive Timing Tasks - being able to recognize, track and finally control an object as it comes at you (aka "catching")

3. Tactical Decision Making Tasks - being able to take in an environmental scan of the field/court and recognize patterns of all the moving objects (i.e. a quarterback scanning his receivers and choosing the best option for a pass).

All of these scenarios require the athlete to focus or "gaze" on the right points in the environment and ignore the rest of the scene. Dr. Vickers' work has been to observe athletes of different skill levels, expert and non-expert, and define the "best practices" of visual control so that the non-expert athletes can be coached to better performance. Her research lab uses "eye-trackers" (see photo) to monitor the focus and gaze of the athlete's pupils as they perform their skills.

For example, she has found that expert baseball hitters focus on the release point of the ball exclusively, rather than random fixations on the pitcher's arm, head, jersey, etc. She found that expert golf putters focus on a specific point on the cup, then a specific point on the back of the ball and remain fixated on the point on the ball after the ball has left the putter blade.

Novices allow their gaze to wander from the ball to the hole, without a very specific focal point on either the cup or the ball. The term "Quiet Eye" comes from these observations that expert performers have consciously chosen points in their space to focus on rather than allowing their eyes to wander and fixate on multiple points (i.e. a "noisy" eye).


So, why does the Quiet Eye work? When we fixate on key points in our field of vision, how does this help our neuromuscular systems perform better? The subconscious part of our brain may be recognizing a pattern that we have seen and experienced before and directing our movements based on this information. Some have called this "muscle memory", meaning our brain has learned through repetition and practice how to throw a ball to a moving receiver at that distance and speed, and so, when presented with a similar scenario, knows what to do. Think about when you shoot a jump shot and sometimes you get that sensation, as soon as it leaves your hand, that the ball is going in. Your brain may be telling you that, based on past experience, when you've executed the same aim and same muscle movement then the ball has gone in.

This takes us back to the discussion we had in our previous post on baseball fielding regarding theories of perception-action combinations. The Information Processing model claims that we perceive the environment first through our senses, primarily our vision. Then, we access our memory to find the rules, suggestions and knowledge that we have gained from past experiences and these memories guide our action in the moment.

The Ecological Psychology model removes the memory access step and claims that our perception of the environment leads directly to our actions, as there is not enough time to access our lessons. If that is true, then how does the Quiet Eye help us? It seems the Quiet Eye is what we need to connect the current scenario (standing on the free throw line looking at the basket) with our lessons learned from the past (how we made this shot hundreds of times before). Research continues on this question and I'm sure we'll come back to this in future posts.


Next time, I will take a look at Dr. Vickers' "Decision Training Model", which builds on the Quiet Eye theory to train athletes to improve their tactical in-game decision making. We will look at the athletes who are known as having good "vision of the field" and how to raise everyone's game to that level.

So Why Can't Shaq Make Free Throws?

The NBA league average for free throw shooting is about 75%. Shaquille O'Neal's career average is 52.4%. Even worse, Ben Wallace's career average is 41.9%. The average for the NCAA Division 1 teams is 69%. The obvious question is why can't Shaq or Ben or Memphis do any better, but the bigger question is why do most of the best basketball players in the world miss 2 or 3 free throws out of 10? Maybe they just haven't heard about Joan Vickers and the "Quiet Eye".

For me, the best science is applied science. The same goes for sports science. Theories, physics, psychology, etc. are only useful in sports if they can be used to improve in-game performance. That's why I have always been a fan of academic work that leads to useful techniques in the field. Professor Joan Vickers of the University of Calgary has been applying her research into the human visual system and its effects on sports performance for over 25 years. She is the discoverer of the "Quiet Eye" skill that has been shown to significantly improve accuracy in targeting and decision-making skills in many sports. In addition to this "gaze control" technique, she also has developed a 7-step teaching process to improve the in-game decision-making of athletes, based partly on their visual perception skills.

She has a new book out that condenses all of these ideas, called Perception, Cognition and Decision Training. Over the next few days, I will do my best to paraphrase and explain the most useful information and techniques, but of course the best source is this book.
For an opening primer on the Quiet Eye, please take a look at this episode and this online video of PBS' Scientific American with Hawkeye himself, Alan Alda, shooting free throws.

The Map of Sport Skills

One of the most common sense categorizations of sport skills that I have run across is from Successful Coaching, 3rd Edition by Rainer Martens. By the way, I highly recommend this book as a complete reference to the basics of coaching. On page 182-3, The "Celestial Map of Sport Skill" shows six areas that an athlete has to develop to be a complete player. I'll paraphrase them here:

Technical Skills - similar to the "Motor Skill Competence" that I list in the Sports Cognition Framework (SCF), these are the generic sport skills that cross several different sports:
- Hitting
- Fielding
- Shooting
- Passing
- Kicking
- Guarding
- Throwing
- Running
- Jumping

Tactical Skills - like "decision-making ability" referenced in the SCF, these are the "in-game" abilities to choose the right thing to do in different scenarios
- Rules of the game
- Reading the situation
- Situation tactics
- Self awareness of skills
- Game plan and strategy
- Decision-making skills

Mental Skills - "Positive Mental State" in the SCF, these skills make up the emotional and motivational state of the athlete. Often included in the field of Sport Psychology
- Motivation
- Emotional control
- Concentration
- Confidence

Physical Skills - this set of skills is the raw athletic skills that are needed to perform the technical skills
- Speed
- Power
- Flexibility
- Quickness
- Balance
- Agility
- Strength
- Acceleration
Character - to build a complete athlete and person, these skills are necessary
- Respect
- Fairness
- Honesty
- Responsibility
- Leadership

As I have mentioned previously, my focus in this blog will be on the first three skill sets, leaving Physical Skills to the many practitioners and exercise facilities for athletes and Character to other life-learning environments.

The Sports Cognition Framework



So, why should athletes and coaches be interested in all of this cognitive science stuff? They have been playing and coaching these sports for years, practicing with the same drills and routines and having success. Some may say, "if it ain't broke..." At the same time, all players and coaches are looking for the "the Edge"; the practice technique, game strategy, player development skill that will help the bottom line; winning. The physical training attributes still need to be developed in terms of raw speed, acceleration, agility, strength and balance. Hours are spent in the training rooms and gyms improving these variables. The game preparation process is still there; watching film, breaking down strengths and weaknesses of the opponent, tactical planning, etc. Some may say that is the "mental preparation" needed for competition. That's true, it is a plan for success, but the key is in execution of the plan. At the exact moment in the game when execution is needed, will each player know the right thing to do and be able to do it? That is the essence of what I call the "Sports Cognition Framework". It is the combination of the three themes: decision-making competence (knowing what to do), motor skill competence (being physically able to do it), and positive mental state (being motivated and confident to do it). There seem to be many, deep areas of research into each of these topics. My job is to dig into each of these areas and look for relevant research that you will find practical to include in your training or your coaching.

Where Does Sport Psychology Fit?

As I outline my framework for researching the neuro-motor skills necessary for sports, I have debated where the discipline of "sport psychology" fits. Obviously, the topics of motivation, fear, anxiety, concentration, imagery and leadership are critical to the success of any athlete, and are often included under the heading of sport psychology. I can see more application of these ideas in the realm of decision theory than the core skills. An athlete does not perform in a vacuum. His decisions on the field are affected by his emotions, his confidence level, his fear of failure. For example, what effect does the game situation have on a pitcher's skill level? If the score is 0-0, with no one on base and 2 outs in the first inning, not only will his pitch selections and execution be determined by his rational, tactical decisions, but also by his confidence level at that point. Did his last outing go well? Has he had a good month of starts, or is he nervous about getting through this game? Athletes are humans, not robots. Their confidence, motivation and emotions cannot be detached from their skills. The degree to which they can keep their feelings under control are a measure of their maturity as a player but all athletes are somewhere along the continuum. Based on this assumption, we will definitely dig into this "emotional intelligence", to borrow the phrase from Daniel Goleman, but will separate the topics initially and address their intersection later.

What Was He Thinking? Decision Theory in Sports



Previously, I outlined the core framework of sports skills. Over time, my intention is to dive deep into each of those areas and present research that will be useful to you in understanding the brain-body connection. Again, the goal of my ramblings here is to examine the foundation of skills necessary to perform well across the continuum of most sports. Ongoing posts will use this framework to organize this information into categories that are easy to search and focus on what you are interested in that day.

In addition to the core skills, there seems to be another equally significant side of sports cognition known as "decision theory". There is a deep research base in this area, not only specific to sports, but across other platforms (i.e. business, medicine, etc.) Basically, the application in sports looks at how athletes make thousands of split-second decisions during a game, some which will go unnoticed, but some that will affect the outcome. While most of these decisions appear instant and somewhat random, are there layers of "conditioning" that trigger one response versus another? Let's look at some examples:
Situation 1: Mike brings the basketball up the floor during a game and makes a pass to Tom. How many factors affected Mike's decision about that pass?
- Tom appeared to be "open".
- The play that the coach called dictated that Mike pass first to Tom.
- The game was tied and time was running out, and Mike knew Tom was the best option to score.
- Mike knew that Jack, another teammate, had missed his last 5 shots and wanted to avoid giving him the ball.
- Mike had missed his last 5 shots and was afraid to shoot.
- Mike and Tom are friends and feel the rest of the team is not at their skill level.
- Mike's choice was completely random
- Is there a "correct" answer, and if not, how do we judge effectiveness of the decision?

Situation 2: Mary is playing centerfield for her softball team. There are runners on 1st and 2nd base and there is 1 out. A ground ball is hit to her, she fields the ball and now needs to make a throw to a base. How does she decide where to throw?
- What is her "pre-pitch" analysis of the game situation? Does she have a plan of where to throw?
- What is the score of the game? Does she need to prevent a run from scoring?
- What is her self-assessment of her throwing ability? Does she have confidence in her throw to any base?
- What does her visual information give her during the play? When she fields the ball and looks up, what are her eyes telling her about the changing position of the runners?
- What are her teammates and coaches instructing (yelling at) her to do?
- Is there a "correct" answer?

To me, this side of the "80% mental" equation is just as important to success in sports. It deserves alot of attention and understanding, before we can coach athletes on how to improve these decision making skills. We will add this to our outline of research.