The Secret Ingredient to Sports Success: An Interview With David Epstein On The Sports Gene

The Sports Gene
Maybe its not all about practice.  Since the youth sports world fell in love with the romantic notion that 10,000 hours of structured practice is the magic ingredient to world-class mastery in just about any field, especially sports, we've forgotten or ignored that our genetic endowment may still have something to do with the outcome.  Just watch this video of a young Lionel Messi, who was probably still working towards his 10,000 hour total at the time.  He clearly has something else, something that was already there at age 5 and something that the other kids didn't have.

David Epstein, senior writer at Sports Illustrated, has been on a search for that extra something.  In his new book, The Sports Gene, Epstein launched himself directly into the nature vs. nurture, genes vs. practice and natural vs. self-made debates about athletic greatness.


I recently had a chance to chat with David about his book and found out that there is a complex, misunderstood mixture of variables in the magic formula:


David, congratulations on your new book!  One of my all-time favorite SI articles of yours is the 2010 piece “Sports Genes”.  At the time, you opened many eyes on the influence of genetics on athletic performance.  Is it safe to say that the science and our understanding of it has come a long way in the last three years?

David Epstein
David Epstein: I appreciate that! I think it safe to say that the science has come a very long way in the last three years. At the same time, the studies of genes related to sports performance is still hampered by certain problems. A decade ago, scientists hoped that genetics might be simple; that single traits, like, say, height, might be attributable to a single gene or a small number of genes. But now it’s clear that most traits—and certainly those as complex as athleticism—can involve large numbers of genes, each with a small effect. That can make things particularly tricky for studying elite athletes, because there aren’t very many elite athletes in the world, so studies are often too small to detect the effects of relevant genes. 

Still, using certain innovative methods, like those described in chapter five of my book, scientists are pinpointing some of the genetic influences on an individual’s ability to adapt to a training regimen. And that now looks to be a key component of “talent,” not simply some skill that manifests prior to training, but the very biological setup that makes one athlete better at adapting to a particular training plan. In recent years, both with respect to endurance and strength training, the science has increasingly shown that genes mediate the ability to “respond” to training, and it appears that work will continue to be bolstered. People often say “I’m not very talented in this or that area,” but the genetic work is increasingly showing that we can’t necessarily know if we have talent before we try training.

In the book, you tell the story of Dan McLaughlin, an amateur golfer, who has put his life on hold while he accumulates the infamous 10,000 hours of deliberate practice towards his goal of playing on the PGA Tour.  You document how genetics can offer exclusive physical advantages for sprinters, swimmers or even baseball batters.  However, in sports like golf, dominated more by mental skill than brute physical abilities, does genetics still play a role or is it all about practice?

DE: That’s a great question. For starters, there is less scientific evidence regarding genes that influence skill in very technical sports, like golf, but that is partly because those skills are difficult to study. We have enough trouble finding genes for simple traits, like height, and physiologists don’t even understand everything that makes a great golfer, much less the genes that undergird the particular physiological traits. As Sir Roger Bannister once said: “The human body is centuries in advance of the physiologist, and can perform an integration of heart, lungs, and muscles which is too complex for the scientist to analyze.” No where is this complexity more difficult for scientists to link to specific traits than in sports based on specialized skills. So one reason there’s more known about genes—or innate physiological traits—that influence the more raw athletic skills is simply because scientists more often choose to study athletes engaged in more “raw” sports. The idea is it will be easier to find the biological influences. 

That said, there are mounds of studies that show that when individuals practice motor skills, differences in the rate of progress become apparent in all but extremely simple skills. In some studies, the more complex the skill, the greater the differences between individuals will become as they practice. In other words, there are differences in “trainability.” Which genes are at play here is largely a mystery, but that doesn’t mean they don’t exist. Remember, we don’t know many of the genes that influence height, and yet from studies of families and large populations, we know quite well that differences in the heights of adults in any given population are generally at least 80% inherited. 

To use an example relevant to some of the writing in my book, left-handed people are highly overrepresented among chess masters. We don’t know what the “left handed genes” are, but we know there is a genetic component. Men are about twice as likely to be left handed as women, for example. So it would seem as if certain genes for left-handedness, which of course means brains that influence motor control in the brain, interact with the learning of a skill like chess. As a related aside, Belgian scientist Debbie Van Beisen has shown that competitive table tennis players with mental handicaps fail to learn the anticipatory cues required to return shots as quickly as similarly experienced table tennis players who do not have mental handicaps.

Additionally (and I actually had to trim much of this from the book) there is some interesting work implicating specific genes in motor skill learning. Here’s a snippet I had to cut from the book, as my first draft was WAY over printable length:

“The level of BDNF is elevated in the brain’s motor cortex when people learn a motor skill, and BDNF is one of the neural signals that coordinates the reorganization of the brain when skills are learned. And a 2006 study found that, when people practiced motor skills with their right hand—like putting small pegs in holes as quickly as possible—the area of the activated brain representing the right hand, the neural “motor map,” increased in size with practice only in those people who did not have a met version of the BDNF gene. All of the subjects started with similar sized motor maps, but only the non-met carriers experienced a change with practice.

And in 2010 a group of scientists led by neurologist Steven C. Cramer set out explicitly to test whether the BDNF gene impacts the kind of memory involved in motor skill learning, and their findings suggest that it does. In that study, people drove a car along a digital track 15 separate times in one day. All of the drivers improved as they learned the course, but the met carriers did not improve as much. And when all the drivers were asked back four days hence and made to drive the course once more, the met carriers made more mistakes. When scientists used fMRI to look at the drivers’ brains as they practiced simple motor skills, they found different patterns of activation in the people who had a met version of the BDNF gene.”


Recently, Atlas Sports Genetics has caused a stir in youth sports by offering parents a test for their kids to look for a certain variation of the ACTN3 gene, otherwise known as the “speed gene.”  You mention that this test is only useful to know if your youngster is the next Usain Bolt or Carmelita Jeter, something parents probably already know.  What’s next on the horizon for genetic testing for young athletes?  Are there genes or combinations of genes for traits like reaction time, balance or coordination?

DE: First, just to clarify, the ACTN3 gene is only really useful for telling you that your youngster will not be the next Bolt—if they don’t have the so-called “right” version for sprinting. But it doesn’t even do a very specific job of that, since most people have the “right” version. And, let’s face it, you can take your kid to the playground and have him race the other kids and you’ll get a better idea of his chances of becoming the next Bolt than you would with a genetic test. 

As far as the next frontier of genetic testing for young athletes, I think it will undoubtedly be “injury genes,” before performance genes, and we’re already actually starting to see a bit of that. I spent some time with Brandon Colby, an L.A.-based physician who treats retired NFL players, and—at the behest of parents—he already tests some teenagers for their version of the ApoE gene. As I write in the book, one version of this gene makes an individual more susceptible to brain damage from concussions or the kind of hits to the head to occur on every football play. There are other gene variants that put some athletes at risk of dropping dead on the field, and others that appear to increase the risk of an injury like a ruptured Achilles tendon or torn ACL. 

As I discuss in the book, some of these genes are actually now being used for practical purposes, and I think that we’ll see that increase. As for reaction time, I don’t think we’ll see much there, given that, as I explain in the first chapter, the simple reaction times—the time it takes one to hit a button in response to a light—of elite athletes are no different than those of teachers, lawyers, or college kids. The skills that allow hitters to intercept 100 mph fastballs are learned perceptual skills, not innate reaction abilities. And even if simple reaction time was important, it would be way easier to measure directly—by giving someone a reaction time test—than indirectly by looking at genes.

Here at Sports Are 80 Percent Mental, we talk a lot about the brain’s role in playing sports.  From vision to perception to decision making to emotions, the brain plays a critical role in sports success.  What have we learned about neurogenetics that can influence an athlete’s performance from a cognitive perspective?

DE: One of the most surprising things I learned in my reporting was that scientists know quite well that not only does the dopamine system in the brain—which is involved in the sense of pleasure and reward—respond to physical activity, but it can also drive physical activity. 

One of the scientists I quote in the book suggests that this may be why very active children who take Ritalin, which alters dopamine levels, suddenly have less drive to move around. That’s precisely what he sees when he gives Ritalin to the rodents he breeds for high voluntary running, anyway. And it appears that different versions of genes involved in the dopamine system influence the drive to be active. (Interestingly, native populations that are nomadic and that migrate long distances tend to have a higher prevalence of a particular dopamine receptor gene; the same one that predisposes people to ADHD. I discuss in the book the possible link.) 

One of my takeaways from the research I did for the book was that some traits we think are innate, like the bullet-fast reactions of a Major League hitter, are not, and others that we often portray as entirely voluntary—like the compulsive drive to train—can have important genetic components. Additionally, the section of the book that deals with pain in sports, and discusses the genetics of pain, gets into the fact that the circuitry of pain is shared with circuitry of emotion. (Morphine, after all, doesn’t so much dull pain as make one less upset about it.) And the first genes that are emerging that might allow athletes to deal calmly with pain on the field—like, perhaps, the COMT “warrior/worrier” gene—are genes involved in the metabolism of neurotransmitters in the brain. And, of course, as I mentioned in my longwinded answer to the second question, there are genes that appear to influence motor learning.

David, you were a competitive runner in your college days at Columbia and I understand you still run quite a bit.  Has the research for this book given you any insight or tips that you or other weekend athletes can use?

DE: Indeed I was. I was an 800-meter runner. I still love running, but I’d call what I do now “jogging”! But working on this book gave me certain broad insights that I apply to my own training. In 2007, the prestigious peer-reviewed journal Science listed “human genetic variation” as the breakthrough of the year; the revelation of how truly different we are from one another. And, as J.M. Tanner, the eminent growth expert (and world class hurdler) once put it: “Everyone has a different genotype. Therefore, for optimal development…everyone should have a different environment.” No two people respond to a Tylenol the same way because of their distinct biology, and no two people respond to the medicine of exercise the same way either. 

When I was in college, I had better endurance—at all distances—on a training plan of 35 miles per week that included carefully selected intervals, than I had previously on 85 miles per week of cookie-cutter distance training. If you aren’t taking a scientific approach to your training—and this doesn’t mean cutting edge science, but just paying attention to what you best respond to—then you aren’t getting everything out of yourself. To use track, because it’s just an easy example, in every training group from high school to the pros, you have groups of runners doing identical workouts, and yet never crossing the line at the same time in a race. 

Genetic science is showing us that the most important kind of “talent” isn’t some physical trait that preexists training, but rather that ability to physically adapt to training. And studies I describe in the book make it quite clear that particular genes mediate an individual’s ability to benefit from training such that two people can have drastically different results from the same training plan. 

So if you feel like, for some reason, you aren’t getting results on par with your training partner, you might be right. And the problem might be you, in the very deepest sense. So don’t be afraid to try something different. Several of the athletes I write about in the book weren’t afraid to jump into entirely new activities or training plans, and some came out world champions.

Thank you, David and good luck with the book!


Do Young Athletes Need Practice Or Genetics? A Conversation With Peter Vint


Recently, while I was taking up my normal Saturday position on a youth soccer game sideline, I overheard a conversation between two parents as they watched the players warm-up. “I just love watching James play soccer.  He’s just one of those natural talents.” “I agree. Even though his parents never played growing up, he just seems to have inherited all the right genes to be a top player.” 

It’s a common belief among parents and some coaches that kids either have “it” or they don’t.  Of course, some skills can be gained from practice, but the talent theory of player development and team selection seems to favor the opinion that athletic skill is “hard-wired”, unable to progress much beyond the natural limit.

Now, several books are out to prove this theory incorrect, with titles such as “The Talent Code: Greatness Isn’t Born, Its Grown”, “Talent Is Overrated”, and “The Genius in All of Us: Why Everything You've Been Told About Genetics, Talent, and IQ Is Wrong.” The common thread through all of the research studies quoted by the authors is the mantra that practice makes perfect. More specifically, about 10,000 hours of highly structured practice is required to reach elite performance levels.

Is athletic success that black or white? Instead, is there a combination of talent and tenacity that is required to reach the top? I put these questions to an expert who spends most of his waking hours trying to find the answer.

Peter Vint
Peter Vint is the High Performance Director for the United States Olympic Committee. His responsibilities include leading and coordinating the efforts of sport science and medical professionals focused on the Olympic sports of swimming, track and field, shooting, equestrian, weightlifting, and golf as well as the Pan Am sports of bowling and water skiing.

His team is responsible for conceptualizing, developing, and implementing successful and sustainable applied sport science programs with a focus on maximizing athlete development, performance, and longevity.

Recently, Peter was kind enough to endure my endless questions on this topic. Here is a synopsis of our conversation:

Dan Peterson: Peter, what makes a great athlete? Is it raw, inherited talent or years of dedicated practice?

Peter Vint: The question of what makes an athlete great is very complex.  The extent to which performance is influenced by genetic predisposition or the expression of these traits through extensive hard work and practice is not at all a black and white issue. Human performance is always nuanced and complicated and multivariate. That said, if forced to give an opinion, I would absolutely fall on the nurture/deliberate practice side of this issue than on the nature/"giftedness" side.

But, whether you subscribe to the narratives in The Talent Code, Talent is Overrated, Bounce, Outliers, Genius in All of Us, etc. or not, a great number of the cited references in these books are solid and substantial. Be sure to review the footnotes and bibliographies.

DP:  Most of the books you reference go back to the research of K. Anders Ericsson of Florida State University, known as the “expert on experts.”  His theory states that an individual needs at least 10 years and 10,000 hours of deliberate practice in their chosen sport or skill to become world-class.  Some authors take this literally and suggest that is all that is needed.  Do you agree?

PV:  First, it’s important to recognize that the 10 year/10,000 hr rule is more of a general guideline than an absolute standard. Ericsson is very clear on this but perhaps owing to the simplicity of the message, it is quite possible that the general public has interpreted this in a more absolute sense. That said, I do think that Ericsson’s work is being somewhat oversimplified in that he, and others in this field, realize that there are obvious and necessary interactions between genetic predisposition, "deliberate practice", and even "opportunity" or circumstance. To what extent this has actually happened I cannot say. I can point to several examples in the popular media where authors have captured these complexities nicely (e.g., Malcolm Gladwell’s Outliers, Matthew Syed’s Bounce, and David Shenk’s The Genius in All of Us).

It is likely that athletes like Lebron James, Shaquille O'Neill, and Kevin Durant would never have become an Olympic gymnast or Triple Crown winning jockey - regardless of how hard or how deeply they practiced. But, how many athletes with a relatively similar genetic makeup to guys like Lebron, Shaq, and KD have NOT become superstars? A lot. And, to flip the coin, how many superstars arise from relative obscurity or against all odds? A lot. Even when we do become aware of "young geniuses", closer inspection often yields interested and engaged and supportive parents and an environment that encourages and supports "effort" - and not "the gift" (see Carol Dweck’s “Mindset” for an exceptional treatment of this topic). Michael Jordan, Wayne Gretzky, and Tiger Woods come to mind.

My feeling in reading a broad body of literature related to human performance is that, in general (and there are notable exceptions to this), there is likely a minimal set of physical traits or genetic makeup which facilitates achievement to a particular level of success. Note that this may not be an absolute necessity (think, Mugsy Bogues). However, I believe the great differentiator in human performance is not genetic predisposition. but rather the expression of the gene pool which is itself now clearly related to the extent to which the individual accumulates hours of "deliberate practice".

I see another common misinterpretation in the 10 year/10,000 hr rule. The literature is clear in this but the general public’s understanding often misses the distinction in that this is not simply accumulated hours of practice, but accumulated hours of DELIBERATE practice. Dan Coyle's introduction in "The Talent Code", "The girl who did a month's practice in 6-minutes" is, in my opinion, perhaps the most insightful example of this distinction I’ve ever read.

DP: So, do genetics play any role in sports success?

PV: My short answer is yes, to varying extents, they do. But, as before, I do not believe that genetics are necessarily an absolute limiter of exceptional performances. "Skill" is developed, not from basic physical or cognitive attributes or from some magical quality ("a gift"), but from sustained, effortful, and effective practice complemented with meaningful, well-timed, and actionable feedback.

Skill itself is a complex process and almost always involves many different types or classes of skill: motor skill (the physical actions involved with "doing something"), mental skills, and perceptual skills. The extent to which these various types of skills are called into play will depend on the overall task being executed.

For example, a pilot controlling an automated aircraft may need only nominal motor skill to press a button, but will require substantial mental and perceptual skill to understand what happens when the automation switches from one mode to another. On the other hand, a basketball player will require extensive motor skill in executing a drive to the basket but will, though to a lesser extent, also involve perceptual and mental skills. Good examples of the world's best players in sport (especially team sports) seem to have exceptionally well developed perceptual skills which allow them to "see the field" better than others and "know where players will be before they even arrive".

So, physical ability (height, strength, speed, coordination) and the specific genetic code which tends to manifest it, may or may not play a significant role in the execution of the skill, depending on what the skill actually requires. The same is true of genetic predisposition, which may either enhance or impair the development of mental and perceptual skill.

In the context of sport, well-matched physical abilities are often very advantageous. That said, those same physical attributes, without an ability to properly coordinate body actions or to properly execute the action at the appropriate time or to adequately control them under pressure or in unusual circumstances, more often than not, will lead to poorer performances. Pointing again to examples like Wayne Gretzky or Magic Johnson, these were not the biggest, fastest, or strongest athletes in their sport. Their exceptional performances came from exceptional development of all facets of the skills they were required to execute in the environments they worked in. This did not happen magically but through hard work, vast and varied experiences, and a level of physical ability that allowed them to execute.  To quote Wayne Gretzky, “I wasn't naturally gifted in terms of size and speed; everything I did in hockey I worked for. ..The highest compliment that you can pay me is to say that I work hard every day…

DP:  Peter, thank you very much for your insight.


Month Of Birth Determines Success In Sports

The month of your birth influences your chances of becoming a professional sportsperson, an Australian researcher has found.  Senior research fellow Dr. Adrian Barnett from Queensland University of Technology's Institute of Health and Biomedical Innovation studies the seasonal patterns of population health and found the month you were born in could influence your future health and fitness.

The results of the study are published in the book Analysing Seasonal Health Data, by Barnett, co-authored by researcher Professor Annette Dobson from the University of Queensland.
Barnett analysed the birthdays of professional Australian Football League (AFL) players and found a disproportionate number had their birthdays in the early months of the year, while many fewer were born in the later months, especially December.

The Australian school year begins in January. "Children who are taller have an obvious advantage when playing the football code of AFL," Dr. Barnett said. "If you were born in January, you have almost 12 months' growth ahead of your classmates born late in the year, so whether you were born on December 31st or January 1st could have a huge effect on your life."

Dr. Barnett found there were 33 percent more professional AFL players than expected with birthdays in January and 25 percent fewer in December. He said the results mirrored other international studies which found a link between being born near the start of school year and the chances of becoming a professional player in the sports of ice hockey, football, volleyball and basketball.

"Research in the UK shows those born at the start of the school year also do better academically and have more confidence," he said. "And with physical activity being so important, it could also mean smaller children get disheartened and play less sport. If smaller children are missing out on sporting activity then this has potentially serious consequences for their health in adulthood."

Dr. Barnett said this seasonal pattern could also result in wasted talent, with potential sports stars not being identified because they were competing against children who were much more physically advanced than them. He said a possible solution was for one of the sporting codes in Australia to change the team entry date from January 1st to July 1st.


Source: Springer and Analysing Seasonal Health Data.

Athletic Gene ACTN3 = "All Children Test Newborn To 3"?






Of all of the decisions parents face regarding their children's future, choosing between shoulder pads or running shoes for their Christmas present seems trivial. Well, according to Kevin Reilly, president of Atlas Sports Genetics, this is a decision you should not take lightly.
"If you wait until high school or college to find out if you have a good athlete on your hands, by then it will be too late," he said in a recent New York Times interview. "We need to identify these kids from 1 and up, so we can give the parents some guidelines on where to go from there."

Earlier this month, Reilly's company began marketing a $149 saliva swab test for kids, aged 1 to 8, to determine which variant of the gene ACTN3 is in their DNA. According to a 2003 Australian study, ACTN3 was shown to be a marker for two different types of athletic prowess, explosive power or long endurance. While everyone carries the gene, the combination of variants inherited, one from each parent, differs.

Science of success
The R variant of ACTN3 signals the body to produce a protein, alpha-actinin-3, which is found exclusively in fast-twitch muscles. The X variant prohibits this production. So, athletes inheriting two R variants may have a genetic advantage in sports requiring quick, powerful muscle contractions from their fast-twitch muscle fibers.

In the ACTN3 study, Dr. Kathryn North and her lab at the Institute for Neuromuscular Research of the University of Sydney looked at 429 internationally ranked Australian athletes and found significant correlation between power sport athletes and the presence of the R variant. All of the female sprint athletes had at least one R variant, as did the male power-sport athletes. In fact, 50 percent of the 107 sprinters had two copies of the R variant.

 What about those aspiring athletes that were not fortunate enough to inherit the R variant and its protein producing qualities?

North's team also noted that the elite endurance athletes seemed to be linked to the XX variation, although only significantly in the female sample. In 2007, her team pursued this link by developing a strain of mice that was completely deficient in the alpha-actinin-3 protein similar to an athlete with an XX allele. They found the muscle metabolism of the mice without the protein was more efficient. Amazingly, the mice were able to run 33 percent farther than mice with the normal ACTN3 gene.


Cloudy future
Additional research is showing mixed results, however.

In 2007, South African researchers found no significant correlation between 457 Ironman triathletes, known for their endurance, and the XX combination. This year, Russian researchers at the St. Petersburg Research Institute of Physical Culture also failed to establish the XX-endurance performance link among 456 elite rowers but did find the RR connection among a sample of Russian power sports athletes.

So, can we at least find the next Usain Bolt among our kids?

"Everybody wants to predict future athletic success based on present achievement or physical makeup. But predicting success is much more difficult than most people think," Robert Singer, professor and chair of the department of exercise and sport sciences at the University of Florida warns in the book "Sports Talent" (Human Kinetics Publishers, 2001) by Jim Brown.

"There are too many variables, even if certain athletes have a combination of genes that favors long-range talent," Singer said. "A person's genetic makeup can be expressed in many different ways, depending on environmental and situational opportunities. Variables such as motivation, coachability, and opportunity can't be predicted."

Destiny?
Just as we assume that kids that are at the 99 percent percentile in height are destiny-bound for basketball or volleyball, having this peek into their genome may tempt parents to limit the sports choices for their son or daughter.

Even Mr. Reilly expressed his concern in the Times article: "I'm nervous about people who get back results that don't match their expectations," he said. "What will they do if their son would not be good at football? How will they mentally and emotionally deal with that?"

For those parents that are just not ready to discover the sports destiny of their child, or just want to save the $150, there is a much simpler alternative. Hold your son or daughter's hand, palm up. Measure the lengths of their index finger and their ring finger. Divide the former by the latter. According to John Manning, professor of psychology at the University of Central Lancashire, if the ratio is closer to .90 than 1.0, you may have a budding superstar.

Manning explains in his aptly named new book, "The Finger Book" (Faber and Faber, 2008),that the amount of a fetus' exposure to testosterone in the womb determines the length of the ring finger, while estrogen levels are expressed in the length of the index finger. According to Manning's theory, more testosterone means more physical and motor skill ability.

The digit ratio theory, as it is known, has been the subject of more than 120 studies to find its effect on athletic, musical and even lovemaking aptitude.

Don't worry if the ratio is closer to 1.0, which is by far the norm. Plus, you will be able to relax, enjoy your kids' sports events and only worry about their genetic disposition to being happy.

Please visit my other articles on Livescience.com