Learning A New Sport Skill Is Just Trial And Error For Your Brain

Learning A New Sport Skill Is Just Trial And Error For Your Brain

Just about every coach and parent, not to mention most young athletes, have heard the vague but obvious phrase, “practice makes perfect.” Quarterbacks wanting to complete more passes need to throw a lot more balls. Rising basketball players who need to increase their free throw percentage need to shoot hundreds of free throws. 

In most cases, repeating a motor skill over and over in slightly different environments and conditions will improve the success rate. If not, we would all still struggle with tying our shoes or riding a bike.

But what is it about practice that helps our brains figure out the specific task while also generalizing enough to transfer the skill to different scenarios? Kicking a football through the uprights of a goal post is slightly different than kicking a soccer ball into a goal but we didn’t have to completely relearn the kicking task when switching between the two sports. Researchers at McGill University took another step forward in understanding how the trial and error of practice teaches our brain to perform these complex sports skills.

Read More

For Aaron Rodgers, Practice Makes Perfect Motor Skills

During a Green Bay Packers win over the Atlanta Falcons earlier this season, Peter King, the NFL's dean of sportswriters, found a new level of respect for quarterback Aaron Rodgers.  Here's how King  described one particular third and two play late in the first quarter:

"At the snap, Rodgers’ first look, a long one, was to the left for Nelson. Well covered. Quickly Rodgers turned to the right, to where Cobb was planting his foot in the ground three or four yards upfield and preparing to run a simple in-cut; at the same time, his cover man, cornerback Desmond Trufant, was going to have get through traffic to get to the ball if Rodgers was going to make the throw to Cobb."

Read More

Would You Rather Be A Guitar Hero Or A Golf Legend?

Gary Marcus
Dan McLaughlin
Despite being a well-respected cognitive psychology professor at New York University, Gary Marcus had a secret ambition; to shred amazing riffs that would make Eric Clapton envious.  The fact that he had been gently told as a child he had no sense of rhythm or tone did not discourage his dream.  With a one year sabbatical from NYU available, he turned himself into a lab experiment of how to teach a middle-aged dog new “licks”.

At about the same time, Dan McLaughlin was growing restless with his career as a commercial photographer in Portland.  However, life as a professional golfer seemed to be the dream destination if only he could find the right path to get there.  

On opposite ends of the country, two guys pursuing different goals but with the same underlying principle; devote a large chunk of dedicated time breaking down and learning complicated skills with the help of experienced coaches.


They had both heard of a theory out there by Florida State psychology professor K. Anders Ericsson that claimed the best performers in a variety of fields had accumulated around 10,000 hours of specific, deliberate practice before they became world-class.  Some took more hours, some less, but on average it provided a rough target to shoot for before expecting magic with a Stratocaster or a five iron.
While Marcus’ window of full-time learning was limited to one year, McLaughlin estimated he could reach 10,000 hours of structured golf practice in six years or around 2016.  These timeframes seemed to match their respective goals; McLaughlin’s ultimate measure of success would be to actually earn a player’s card on the PGA Tour, while Marcus just wanted to launch a side passion, maybe start a band.

Given his scientific background, Professor Marcus was able to combine his knowledge of learning theory with his quest.  In fact, he documented the entire adventure in his 2012 book, Guitar Zero, which offers a mix of cognitive science, music theory and guitar stories. McLaughlin tracks his progress at his web site, The Dan Plan, (and soon in an upcoming book), where he provides daily updates including the countdown to 10,000 hours (only 6,220 to go!) See their video overviews below.

I recently caught up with both men to compare their methods and their progress:

Gary, are you familiar with Dan McLaughlin’s quest to teach himself golf in 10,000 hours?

Gary Marcus: “I've been meaning to read more about his story; I think he's been more dedicated about logging the specifics of his practice than I have been. But the number of 10,000 hours itself is pretty crude; there are well-documented cases of people becoming chess masters in barely more than 3,000 hours, and others take 25,000. Some depends on genes, but it also depends on how you practice.”

Dan, what about you; did you know of Gary’s journey to be a guitar god?

Dan McLaughlin: “I am familiar with Gary's book although have not personally read it. The writer that I am working with for The Dan Plan's book read Guitar Zero as part of his research and has told me some aspects of his story.  A similarity could be seen in his full-on approach to learning, and perhaps the biggest difference is the time frame.”  

How related is learning the guitar with, say, learning to golf?

Gary: “There are some obvious differences (e.g. great weight on muscle development in golf), but both are complex skills that require extensive neural rewiring. Guitar has its own kind of athleticism, and arguably places greater demands on memory, but in both cases precision is paramount, and one must integrate a great deal of perceptual input in order to perform appropriate motor actions. In both cases, self-discipline is paramount, and some kind of coaching is critical for anyone wishing to be a top performer. Of course, the outfits are better in rock and roll...”

Has your learning progress in golf been pretty linear with gradual improvement every month, or does it go in bursts with plateaus where you stay the same for awhile? 

Dan: “Learning, from what I have experienced, comes in chunks.  This is why putting in time is so crucial, because you never know when the next big learning bump will occur.  Sometimes days will pass where it seems like nothing is being achieved then that will be followed by a period of great momentum.  In the big picture it may be possible to see that learning evens out over time, but when you are in the thick of it the biggest moves always come in bursts.”

Have you had periods where you've gone backwards in your progress?  How do you handle that emotionally?

Dan: “Every time you stretch out your neck to improve the first step is in reverse.  I have yet to make a large change in my swing and immediately see a positive outcome. Rather, when you are in transition, it at first creates errors which are then followed by a slow improvement in consistency and eventually the new move is grooved and the positive results are reaped.  Emotionally, you have to allow for building periods where you know that you will be moving in reverse for a while before you get back to your level and break through to the next.”

Gary: “Learning to cope with failure and to channel into improved performance is an art that any human being ought to develop, no matter what they are learning. Some of that is about setting proper goals, and appreciating progress.”

Both music and golf have “rules” or foundational elements that need to be learned.  How do our brains wire themselves to follow these principles?

Gary: “Music is a special case in that there is a lot of formal knowledge (about music theory) that can be taught, both demand a lot of unconscious knowledge, too. I'm not a golfer, but I wonder whether there are (aside from the formal rules of the game) mathematical principles in golf that are analogous to the principles of harmony and voice leading. Then again, lots of people make beautiful music without any formal understanding of those  rules. (And as in any creative endeavor, the best artists have a good sense of when it is effective to break the rules.)”

In Guitar Zero, you explain that learning a new skill is often spread across multiple areas of the brain. Yet sometimes we hear that specific brain regions are responsible for specific tasks.  Can you help us understand the difference?

Gary: “I think of the brain as being made up of many subcomponents, whereas I think of most things that we know as depending on choosing that right combination of those components for a particular job. Individual bits of brain tissue often do pretty precise things, but do those same things in the service of many different computations.  So-called “muscle memory” is really in the brain, distributed across areas such as somatosensory cortex and the basal ganglia; you don't learn anything unless you've rewired the brain.”

Can there be a transference of guitar skill to a related task like playing a violin?

Gary: “For sure, though I am told that the bow is a whole other dimension. But lots of things about rhythm and pitch and motion and perception transfer reasonably well. Look at people like Prince, Stevie Wonder, Paul McCartney, etc who play loads of instruments well.”

Do you think a person’s genes play a role in being a talented performer?  Are some people just "born with it"?  

Dan: “If your genetics are somewhere in the norm of the bell curve I do not think that genes play a role in being a great golfer.  There are certain limiting factors such as bone structure limiting range of motion or fused joints, but outside of the extremes we are all capable of being great at this sport.  If there was a genetic advantage then there would be a prototype golfer and from what I see golf champions come in all shapes and sizes.”

Gary: You have to have the genes to be Jimi Hendrix, but all you have to do enjoy yourself is to be sufficiently dedicated, and to allow yourself to enjoy the journey, rather than fixating on the destination.

Gary and Dan, thanks so much for your time and we hope to see you on stage and on the leaderboard!


Join Axon Sports on Twitter and Facebook.

From The Talent Code To The Secret Race - A Conversation With Daniel Coyle

Daniel Coyle
It has been a busy month for Daniel Coyle. When you co-write the definitive book that tells the inside story of how a 7-time Tour de France champion cheated his way to the top step of the Champs-Élysées podium, your life becomes a little hectic. Coyle helped Tyler Hamilton, long-time teammate of Lance Armstrong, document the incredible details of the United States Postal Service racing team during Armstrong’s seemingly invincible years in their book, "The Secret Race". 

From CNN to Charlie Rose to the Today show, Hamilton and Coyle have helped audiences understand the background and motivation that led to the ultimate confessional last week; Lance the Sinner telling all to Mother Oprah.

The side benefit for Coyle to all of this media exposure is the realization of viewers that he writes about topics other than cycling and doping.  Well known in the coaching and education communities for his New York Times bestseller, "The Talent Code", and its follow-up "The Little Book of Talent", he is the voice of the growing belief that you are not necessarily just the genetic product of your parents' athletic or artistic skills.  Practice does matter and practice can provide a path to improvement, if not complete mastery.

Despite his whirlwind month, Dan was kind enough to discuss this new paradigm in sports training and the process of becoming great.  I hope you enjoy the highlights of our conversation.
First, what was your biggest takeaway from the sad but intriguing story of Lance Armstrong’s journey?

Daniel Coyle: “For one of my previous books, I spent two years in Girona, Spain, the home of the USPS team, during a Tour de France season.  While you knew when Armstrong was in town, there was always this secretiveness to his existence.  He was known as Batman for the way people would catch occasional glimpses of him in public.”
“Cycling is a demanding sport, but its less about motor skills and deals more with creating a rider’s engine or his power production plant.  The rider with the most energy and power would most often win the race.  Doping and other performance enhancing drugs were the next step towards producing more power. For me and many others, doping took the pure joy out of the sport and reduced it to a lab of biochemistry experiments.”

Tell us a little about your writing career to date and your dual-topics of talent development and the cycling life?

DC:  “When I was young, I wanted to be a doctor and was on the path to medical school.  However, my favorite day of the week was when Sports Illustrated would show up in my parents’ mailbox.  I became lost in the stories of sports achievement and wanted to be able to write those stories someday.”
“Later, I found out I didn’t really have the fire in the belly for medicine and was able to land a job as an intern at Outside magazine.  Back in those pre-Internet days, the writers would fax their stories in and I would type them, word for word, into the publishing system.  It gave me a chance to read a lot of great writing and taught me about story telling.”
“I was attracted to writing about great performers, whether it be athletes, business leaders or entertainers to find out how they got better at their craft.”

From your first book in 1995 about coaching baseball in the Chicago projects to your latest book, have you learned first-hand how performers and artists improve their craft?

DC: “That’s the really interesting part.  There is this great illusion of looking at performance from the outside as being easy and just a one-time journey with an end. There is no mountaintop of performance. The physics of skill do not permit coasting on a plateau.”
“I recently read a great New York Times piece about Jerry Seinfeld and his endless quest to get better as a comedian.  Whether it be Seinfeld or Albert Pujols or the great writer Philip Roth, they are all doing the same daily, humble, effortful steps to improve their craft.”
“For me, I am always trying to improve.  I have a collection of 3x5 index cards where I’ve written down great sentences from other writers as examples to learn from.”

The sub-title of of your 2009 book, The Talent Code, is “Greatness isn’t born, it's grown.  Here’s how.”  With that simple assertion, you threw yourself right in the middle of the genetics vs. practice debate of how expertise is achieved.  In the last three years, have you seen any new research or evidence that changes your opinion that training can trump innate skills?

DC: “No, if anything we’ve seen more research and support for this concept of structured, deliberate practice being able to improve performance. There is also a new language and vocabulary for talking about training that is beginning to understand the important role of the brain in learning.  The talent hotbeds that I describe in the book have already learned this concept.”
“There is a great new book, How Children Succeed, that emphasizes the role of emotional fortitude in great learners.  Character, grit, perseverance and self-control are critical to the learning curve.”

What is the role of brain research and technology in this world of performance training?

DC: “We’ve learned that brains are not static, they are in a constant process of change throughout our lives.  I like to use the analogy of re-shingling a roof.  Performers need to be always updating and reinforcing their core foundation and adding new layers of knowledge.”
“Technology tools can help to a point but we need to ask to what extent can they accurately represent the real world of sports.  Can a 2D or even 3D virtual world teach pattern recognition and spatial awareness as well as the real thing?  If we can validate the results of these new tools, it will offer a brave new world that will make training more efficient.”
“The key to all of the new cognitive research coming out will be to help coaches translate it and accept it.  The coaching culture is resistant to change and is often a one-way conversation with the athlete.  The high-performance training centers have learned this hard lesson and have adapted to this reality.”

Thanks, Dan, we're looking forward to the next step on your writing journey.
Here is a terrific little video of what you will learn in Coyle's "Little Book of Talent".

Why Ray Allen Keeps Practicing

On his way to becoming an Olympic gold medalist, a 10-time NBA All-Star and the NBA’s all-time leader in 3-point baskets made, Ray Allen picked up a certain shooting practice routine.  Not when he was a rookie, or at the University of Connecticut or in high school, but when he was eight years old.  He had to make five right-handed layups then five left-handed layups before he could leave the gym.  If he ran out of time or was forced off the court by others, “I cried,” he told the Boston Globe. “It messed up my day.”

Over the years, given his success, he might be forgiven if he gave the routine a day off, relying on thousands of previous shots to keep the motor skill alive in his brain and his muscles.  But researchers at the University of Colorado may have now discovered why Allen’s insistence to practice beyond perfection continues to yield a return on his investment of time.

Earlier this year, before Allen departed for Miami, Brian Babineau, team photographer for Boston’s Celtics and Bruins, set out to capture Allen’s obsession with his pre-game ritual in a more meaningful way then folklore or photos.  He filmed an entire shootaround trying to capture Allen’s extreme focus on his craft.
“I wanted to show the seriousness of his pre game shooting ritual, his amazing focus and I wanted to imagine what it was like to be in his mind while he was doing it,” Babineau told ESPN. “Once he starts his shooting sets, you can see he’s in the zone, where everything is black and white. Once he finishes a set, there is a short moment of reality until he starts his next set with the same focus and determination. This goes on for his entire routine, at all the same shooting spots on the court, for every game … and he’s been doing this for years.”

While no one has kept track, it would be a safe bet that Allen has surpassed the infamous 10,000 hours of structured practice to reach world class status.  Indeed, he has become the best at what he does and he’s not buying the notion that he was born with “God-given” skills to play basketball. He described that idea as “an insult.” “God could care less whether I can shoot a jump shot.”
So, what’s the point of this endless devotion to practice?  Are there additional benefits that we can’t see on the surface?  A group of neuromechanic researchers at the Integrative Physiology lab at the University of Colorado-Boulder recently found that we can make subtle improvements in efficiency in our motor skill actions even after we’ve mastered the muscular movements of the task.
They asked a group of volunteers to learn to manipulate a mechanical arm so that it would move a cursor on a screen to a target area.  Learning this novel task involved vision, arm movements and repeated feedback to succeed.  After 200 trials to learn the basics, a force field was added to push back on the mechanical arm enough to force a quick adjustment and update to the skill that had just been figured out.  Even after the volunteers had learned to move the cursor, they kept repeating the skill over 500 times.
During this entire learning process, the test subjects’ muscular activity was measured through electrodes on six arm muscles while their breathing was tracked through a mouthpiece.  Surprisingly, during the experiment, the metabolic rates of the volunteers continued to decline even after their muscular activity had leveled off.  In other words, the brain-body cost to performing the task became more efficient over time, even after the muscles showed that the task had been mastered.
“We suspect that the decrease in metabolic cost may involve more efficient brain activity,” Alaa Ahmed, assistant professor at CU, said. “The brain could be modulating subtle features of arm muscle activity, recruiting other muscles or reducing its own activity to make the movements more efficiently.”
Their research appears in the Journal of Neuroscience.
Shooting three point shots throughout a heated, loud, draining NBA game is certainly a tough test of a player's brain-body efficiency.  If Ray Allen can save just a fraction of metabolic energy through the fine tuning of his skill set, it may be just the edge he needs.
“The message from this study is that in order to perform with less effort, keep on practicing, even after it seems as if the task has been learned,” said Ahmed. “We have shown there is an advantage to continued practice beyond any visible changes in performance.”
Practice works.  Just ask Ray Allen.
Join Axon Sports on Twitter and Facebook.

Do Young Athletes Need Practice Or Genetics? A Conversation With Peter Vint


Recently, while I was taking up my normal Saturday position on a youth soccer game sideline, I overheard a conversation between two parents as they watched the players warm-up. “I just love watching James play soccer.  He’s just one of those natural talents.” “I agree. Even though his parents never played growing up, he just seems to have inherited all the right genes to be a top player.” 

It’s a common belief among parents and some coaches that kids either have “it” or they don’t.  Of course, some skills can be gained from practice, but the talent theory of player development and team selection seems to favor the opinion that athletic skill is “hard-wired”, unable to progress much beyond the natural limit.

Now, several books are out to prove this theory incorrect, with titles such as “The Talent Code: Greatness Isn’t Born, Its Grown”, “Talent Is Overrated”, and “The Genius in All of Us: Why Everything You've Been Told About Genetics, Talent, and IQ Is Wrong.” The common thread through all of the research studies quoted by the authors is the mantra that practice makes perfect. More specifically, about 10,000 hours of highly structured practice is required to reach elite performance levels.

Is athletic success that black or white? Instead, is there a combination of talent and tenacity that is required to reach the top? I put these questions to an expert who spends most of his waking hours trying to find the answer.

Peter Vint
Peter Vint is the High Performance Director for the United States Olympic Committee. His responsibilities include leading and coordinating the efforts of sport science and medical professionals focused on the Olympic sports of swimming, track and field, shooting, equestrian, weightlifting, and golf as well as the Pan Am sports of bowling and water skiing.

His team is responsible for conceptualizing, developing, and implementing successful and sustainable applied sport science programs with a focus on maximizing athlete development, performance, and longevity.

Recently, Peter was kind enough to endure my endless questions on this topic. Here is a synopsis of our conversation:

Dan Peterson: Peter, what makes a great athlete? Is it raw, inherited talent or years of dedicated practice?

Peter Vint: The question of what makes an athlete great is very complex.  The extent to which performance is influenced by genetic predisposition or the expression of these traits through extensive hard work and practice is not at all a black and white issue. Human performance is always nuanced and complicated and multivariate. That said, if forced to give an opinion, I would absolutely fall on the nurture/deliberate practice side of this issue than on the nature/"giftedness" side.

But, whether you subscribe to the narratives in The Talent Code, Talent is Overrated, Bounce, Outliers, Genius in All of Us, etc. or not, a great number of the cited references in these books are solid and substantial. Be sure to review the footnotes and bibliographies.

DP:  Most of the books you reference go back to the research of K. Anders Ericsson of Florida State University, known as the “expert on experts.”  His theory states that an individual needs at least 10 years and 10,000 hours of deliberate practice in their chosen sport or skill to become world-class.  Some authors take this literally and suggest that is all that is needed.  Do you agree?

PV:  First, it’s important to recognize that the 10 year/10,000 hr rule is more of a general guideline than an absolute standard. Ericsson is very clear on this but perhaps owing to the simplicity of the message, it is quite possible that the general public has interpreted this in a more absolute sense. That said, I do think that Ericsson’s work is being somewhat oversimplified in that he, and others in this field, realize that there are obvious and necessary interactions between genetic predisposition, "deliberate practice", and even "opportunity" or circumstance. To what extent this has actually happened I cannot say. I can point to several examples in the popular media where authors have captured these complexities nicely (e.g., Malcolm Gladwell’s Outliers, Matthew Syed’s Bounce, and David Shenk’s The Genius in All of Us).

It is likely that athletes like Lebron James, Shaquille O'Neill, and Kevin Durant would never have become an Olympic gymnast or Triple Crown winning jockey - regardless of how hard or how deeply they practiced. But, how many athletes with a relatively similar genetic makeup to guys like Lebron, Shaq, and KD have NOT become superstars? A lot. And, to flip the coin, how many superstars arise from relative obscurity or against all odds? A lot. Even when we do become aware of "young geniuses", closer inspection often yields interested and engaged and supportive parents and an environment that encourages and supports "effort" - and not "the gift" (see Carol Dweck’s “Mindset” for an exceptional treatment of this topic). Michael Jordan, Wayne Gretzky, and Tiger Woods come to mind.

My feeling in reading a broad body of literature related to human performance is that, in general (and there are notable exceptions to this), there is likely a minimal set of physical traits or genetic makeup which facilitates achievement to a particular level of success. Note that this may not be an absolute necessity (think, Mugsy Bogues). However, I believe the great differentiator in human performance is not genetic predisposition. but rather the expression of the gene pool which is itself now clearly related to the extent to which the individual accumulates hours of "deliberate practice".

I see another common misinterpretation in the 10 year/10,000 hr rule. The literature is clear in this but the general public’s understanding often misses the distinction in that this is not simply accumulated hours of practice, but accumulated hours of DELIBERATE practice. Dan Coyle's introduction in "The Talent Code", "The girl who did a month's practice in 6-minutes" is, in my opinion, perhaps the most insightful example of this distinction I’ve ever read.

DP: So, do genetics play any role in sports success?

PV: My short answer is yes, to varying extents, they do. But, as before, I do not believe that genetics are necessarily an absolute limiter of exceptional performances. "Skill" is developed, not from basic physical or cognitive attributes or from some magical quality ("a gift"), but from sustained, effortful, and effective practice complemented with meaningful, well-timed, and actionable feedback.

Skill itself is a complex process and almost always involves many different types or classes of skill: motor skill (the physical actions involved with "doing something"), mental skills, and perceptual skills. The extent to which these various types of skills are called into play will depend on the overall task being executed.

For example, a pilot controlling an automated aircraft may need only nominal motor skill to press a button, but will require substantial mental and perceptual skill to understand what happens when the automation switches from one mode to another. On the other hand, a basketball player will require extensive motor skill in executing a drive to the basket but will, though to a lesser extent, also involve perceptual and mental skills. Good examples of the world's best players in sport (especially team sports) seem to have exceptionally well developed perceptual skills which allow them to "see the field" better than others and "know where players will be before they even arrive".

So, physical ability (height, strength, speed, coordination) and the specific genetic code which tends to manifest it, may or may not play a significant role in the execution of the skill, depending on what the skill actually requires. The same is true of genetic predisposition, which may either enhance or impair the development of mental and perceptual skill.

In the context of sport, well-matched physical abilities are often very advantageous. That said, those same physical attributes, without an ability to properly coordinate body actions or to properly execute the action at the appropriate time or to adequately control them under pressure or in unusual circumstances, more often than not, will lead to poorer performances. Pointing again to examples like Wayne Gretzky or Magic Johnson, these were not the biggest, fastest, or strongest athletes in their sport. Their exceptional performances came from exceptional development of all facets of the skills they were required to execute in the environments they worked in. This did not happen magically but through hard work, vast and varied experiences, and a level of physical ability that allowed them to execute.  To quote Wayne Gretzky, “I wasn't naturally gifted in terms of size and speed; everything I did in hockey I worked for. ..The highest compliment that you can pay me is to say that I work hard every day…

DP:  Peter, thank you very much for your insight.


Putt With Your Brain - Part 2

If there is a poster child sport for our favorite phrase, "Sports Are 80 Percent Mental", it must be golf. Maybe its the slow pace of play that gives us plenty of time to think between shots. Maybe its the "on stage" performance feeling we get when we step up to that first tee in front of our friends (or strangers!) Maybe its the "high" of an amazing approach shot that lands 3 feet from the cup followed by the "low" of missing the birdie putt. 

From any angle, a golf course is the sport psychologist's laboratory to study the mix of emotions, confidence, skill execution and internal cognitive processes that are needed to avoid buying rounds at the 19th hole. Last time, we looked at some of the recent research on putting mechanics, but, as promised, we now turn to the mental side of putting. Sian Beilock and her team at the University of Chicago's Human Performance Lab recently released the latest of a string of research studies on sports performance, or more specifically, how not to choke under pressure. Lucky for us, they chose putting as their sport skill of choice. This ties in with Dr. Beilock's theory of embodied cognition that we featured in Watching Sports Is Good For Your Brain.

An underlying theme to this work is the concept of automaticity, or the ability to carry out sport skills without consciously thinking about them. Performing below expectations (i.e. choking) starts when we allow our minds to step out of this automatic mode and start thinking about the steps to our putting stroke and all of those "swing thoughts" that come with it ("keep your elbows in", "head down", "straight back").


Our brain over analyzes and second-guesses the motor skills we have learned from hundreds of practice putts. Previously, we looked at automaticity in other sports. Of course, a key distinction to the definition of choking is that you are playing "well below expectations". If you normally shoot par, but now start missing easy putts, then there may be distractions that are taking you out of your normal flow. Choking implies a temporary and abnormal event. Automaticity theory would claim that it is these distractions from some perceived pressure to perform that are affecting your game.

Most research into sport skill performance divides the world into two groups, novices and experts. Most sports have their own measures of where the dividing line is between these groups. Expertise would imply performance results not just experience. So, a golfer who has been hacking away for 20 years but still can't break 100 would still be put in the "novice" category.


Sport scientists design experiments that compare performance between the groups given some variables, and then hypothesize on the reason for the observed differences. Beilock, et al have looked at golf putting from several different angles over the years. Their research builds on itself, so let's review in reverse chronological order.

Back in 2001, they began by comparing the two competing theories of choking, distraction theory vs. explicit monitoring theory, and designed a putting experiment to find the better explanation. Distraction theory explains choking by assuming that the task of putting requires your direct attention and that high pressure situations will cause you to perform dual tasks - focus on your putting but also think about the pressure. This theory assumes there is no automaticity in skill learning and that we have to focus our attention on the skill every time.


Explicit monitoring theory claims that over time, as we practice a skill to the point of becoming an "expert", we proceduralize the task so that it becomes "automatic". Then, during a high pressure situation, our brain becomes so concerned about performance that it takes us out of automatic mode and tries to focus on each step of the task. The research supported the explicit monitoring theory as it was shown that the golf putting task was affected by distractions and pressure for the experts but not the novice putters.

So, how do we block out the pressure, so that our automaticity can kick in? Another 2001 study by Beilock looked at mental imagery during putting. Using the same explicit monitoring theory, should we try to think positive thoughts, like "this ball is going in the hole" or "I have made this putt many times"? Also, what happens if a stray negative thought, "don't miss this one!" enters our brain? Should we try to suppress it and replace it with happy self-talk? She set up four groups, one receiving positive comments, one receiving negative comments, one receiving negative comments followed by positive comments and one receiving none as a control group.


As expected, the happy people did improve their putting over the course of the trials, while the negative imagery hurt performance. But, the negative replaced with positive thought group did not show any more improvement over the control group. So, when faced with a high pressure, stressful situation ripe with the possibilities of choking, try to repeat positive thoughts, but don't worry too much if the occasional doubt creeps in.

Our strategy towards putting should also vary depending on our current skill level. While learning the intricacies of putting, novices should use different methods than experts, according to a 2004 study by Beilock, et al. Novice golfers need to pay attention to the step by step components of their swing, and they perform better when they do focus on the declarative knowledge required. 


Expert golfers, however, have practiced their swing or putt so often that it has become "second nature" to the point that if they are told to focus on the individual components of their swing, they perform poorly. The experiment asked both novices and expert golfers to first focus on their actual putting stroke by saying the word "straight" when hitting the ball and to notice the alignment of the putter face with the ball. Next, they were asked to putt while also listening for a certain tone played in the background. When they heard the tone they were to call it out while putting. 

The first scenario, known as "skill-focused", caused the novices to putt more accurately but the experts to struggle. The second scenario, called "dual-task", distracted the novices enough to affect their putts, while the experts were not bothered and their putting accuracy was better. Beilock showed that novices need the task focus to succeed while they are learning to putt, while experts have internalized the putting stroke so that even when asked to do two things, the putting stroke can be put on "auto-pilot".

Finally, in 2008, Beilock's team added one more twist to this debate. Does a stress factor even affect a golfer's performance in their mind before they putt? This time, golfers, divided into the usual novice and expert groups, were asked to first imagine or "image execute" themselves making a putt followed by an actual putt. The stress factor was to perform one trial under a normal, "take all the time you need" time scenario and then another under a speeded or time-limited scenario. 


The novices performed better under the non-hurried scenario in imagining the putt first followed by the actual putt. The experts, however, actually did better in the hurried scenario and worse in the relaxed setting. Again, the automaticity factor explains the differences between the groups.

The bottom line throughout all of these studies is that if you're learning to play golf, which includes putting, you should focus on your swing/stroke but beware of the distractions which will take away your concentration. That seems pretty logical, but for those that normally putt very well, if you feel stress to sink that birdie putt, don't try to focus in on the mechanics of your stroke. Trust the years of experience that has taught your brain the combination of sensorimotor skills of putting.

Just remember the Chevy Chase/Ty Webb philosophy; "I'm going to give you a little advice. There's a force in the universe that makes things happen. And all you have to do is get in touch with it, stop thinking, let things happen, and be the ball.... Nah-na-na-na, Ma-na-na-na...."


ResearchBlogging.orgSian L. Beilock, Thomas H. Carr (2001). On the fragility of skilled performance: What governs choking under pressure? Journal of Experimental Psychology: General, 130 (4), 701-725 DOI: 10.1037//0096-3445.130.4.701

Sian L. Beilock; James A. Afremow; Amy L. Rabe; Thomas H. Carr (2001). "Don't Miss!" The Debilitating Effects of Suppressive Imagery on Golf Putting Performance Journal of Sport and Exercise Psychology, 23 (3)

Beilock S.L.; Bertenthal B.I.; McCoy A.M.; Carr T.H. (2004). Haste does not always make waste: Expertise, direction of attention, and speed versus accuracy in performing sensorimotor skills Psychonomic Bulletin & Review, 11 (2), 373-379

Sian Beilock, Sara Gonso (2008). Putting in the mind versus putting on the green: Expertise, performance time, and the linking of imagery and action The Quarterly Journal of Experimental Psychology, 61 (6), 920-932 DOI: 10.1080/17470210701625626

Putt With Your Brain - Part 1

If Mark Twain thinks golf is "a good walk spoiled", then putting must be a brief pause to make you reconsider ever walking again. With about 50% of our score being determined on the green, we are constantly in search of the "secret" to getting the little white ball to disappear into the cup. Lucky for us, there is no shortage of really smart people also looking for the answer. The first 8 months of 2008 have been no exception, with a golf cart full of research papers on just the topic of putting. 

Is the secret in the mechanics of the putt stroke or maybe the cognitive set-up to the putt or even the golfer's psyche when stepping up to the ball? This first post will focus on the mechanical side and then we'll follow-up next time with a look inside the golfer's mind.

Let's start with a tip that most golf instructors would give, "Keep your head still when you putt". Jack Nicklaus said it in 1974, "the premier technical cause of missed putts is head movement" (from "Golf My Way") and Tiger Woods said it in 2001, "Every good putter keeps the head absolutely still from start to finish" (from "How I Play Golf"). Who would argue with the two greatest golfers of all time? His name is Professor Timothy Lee, from McMaster University, and he wanted to test that observation. So, he gathered two groups of golfers, amateurs with handicaps of 12-40, and professionals with scratch handicaps. Using an infrared tracking system, his team tracked the motion of the putter head and the golfer's head during sixty putts.

As predicted, the amateurs' head moved back in unison with their putter head, something Lee calls an "allocentric" movement, which agrees with the advice that novice golfers move their head. However, the expert golfers did not keep their head still, but rather moved their heads slightly in the opposite direction of the putter head. On the backswing, the golfer's head moved slightly forward; on the forward stroke, the head moved slightly backward. This "egocentric" movement may be the more natural response to maintain a centered, balanced stance throughout the stroke.


"The exact reasons for the opposite coordination patterns are not entirely clear," explains Lee. "However, we suspect that the duffers tend to just sway their body with the motions of the putter. In contrast, the good golfers probably are trying to maintain a stable, central body position by counteracting the destabilization caused by the putter backswing with a forward motion of the head. The direction of head motion is then reversed when the putter moves forward to strike the ball." Does that mean that pro golfers like Tiger are not keeping their heads still? No, just that you may not have to keep your head perfectly still to putt effectively.

So, what if you do have the bad habit of moving your head? Just teach yourself to change your putting motion and you will be cutting strokes off of your score, right? Well, not so fast. Simon Jenkins of Leeds Metropolitan University tested 15 members of the PGA European Tour to see if they could break old physical habits during putting. His team found that players who usually use shoulder movement in their putting action were not able to change their ways even when instructed to use a different motion. Old habits die hard.

Let's say you do keep your head still (nice job!), but you still 3-putt most greens? What's the next step on the road to birdie putts? Of the three main components of a putt, (angle of the face of the putter head on contact, putting stroke path and the impact point on the putter), which has the greatest effect on success? Back in February, Jon Karlsen of the Norwegian School of Sport Sciences in Oslo, asked 71 elite golfers (mean handicap of 1.8) to make a total of 1301 putts (why not just 1300?) from about 12 feet to find out. His results showed that face angle was the most important (80%), followed by putter path (17%) and impact point (3%).

OK, forget the moving head thing and work on your putter blade angle at contact and you will be taking honors at every tee. Wait, Jon Karlsen came back in July with an update. This time he compared green reading, putting technique and green surface inconsistencies to see which of those variables we should discuss with our golf pro. Forty-three expert golfers putted 50 times from varying distances. Results showed that green reading (60%) was the most dominant factor for success with technique (34%) and green inconsistency (6%) trailing significantly.

So, after reading all of this, all you really need is something like the BreakMaster, which will help you read the breaks and the slope to the hole! Then, keep the putter blade square to the ball and don't move your head, at least not in an allocentric way, that is if you can break your bad habit of doing it. No problem, right? Well, next time we'll talk about your brain's attitude towards putting and all the ways your putt could go wrong before you even hit it!

ResearchBlogging.org

Timothy D. Lee, Tadao Ishikura, Stefan Kegel, Dave Gonzalez, Steven Passmore (2008). Head–Putter Coordination Patterns in Expert and Less Skilled Golfers Journal of Motor Behavior, 40 (4), 267-272 DOI: 10.3200/JMBR.40.4.267-272


Jenkins, Simon (2008). Can Elite Tournament Professional Golfers Prevent Habitual Actions in Their Putting Actions? International Journal of Sports Science & Coaching, 3 (1), 117-127


Jon Karlsen, Gerald Smith, Johnny Nilsson (2007). The stroke has only a minor influence on direction consistency in golf putting among elite players Journal of Sports Sciences, 26 (3), 243-250 DOI: 10.1080/02640410701530902

Watching Sports Is Good For Your Brain

When was the last time you listened to a sporting event on the radio? If given a choice between watching the game on a big screen plasma in HD or turning on the AM radio, most of us would probably choose the visual sensation of television. But, for a moment, think about the active attention you need in order to listen to a radio broadcast and interpret the play-by-play announcer's descriptions. As you hear the words, your "mind's eye" paints the picture of the action so you can imagine the scene and situations. Your knowledge of the game, either from playing it or watching it for years helps you understand the narrative, the terms and the game's "lingo".


Now, imagine that you are listening to a broadcast about a sport you know nothing about. Hearing Bob Uecker or Vin Scully say, "With two out in the ninth, the bases are loaded and the Brewers' RBI leader has two strikes. The infield is in as the pitcher delivers. Its a hard grounder to third that he takes on the short hop and fires a bullet to first for the final out." If you have no baseball-specific knowledge, those sentences are meaningless. 

However, for those of us that have grown up with baseball, that description makes perfect sense and our mind's eye helped us picture the scene. That last sentence about the "hard grounder" and the thrown "bullet" may have even triggered some unconscious physical movements by you as your brain interpreted those action phrases. That sensorimotor reaction is at the base of what is called "embodied cognition". 
 
Sian Beilock, associate professor of psychology and leader of the Human Performance Lab at the University of Chicago, defined the term this way: "In contrast to traditional views of the mind as an abstract information processor, recent work suggests that our representations of objects and events are grounded in action. That is, our knowledge is embodied, in the sense that it consists of sensorimotor information about potential interactions that objects or events may allow." She cites a more complete definition of the concept in Six Views of Embodied Cognition by Margaret Wilson. Another terrific overview of the concept is provided by science writer Drake Bennet of the Boston Globe in his article earlier this year, "Don't Just Stand There, Think".


In a study released yesterday, "Sports Experience Changes the Neural Processing of Action Language", Dr. Beilock's team continued their research into the link between our learned motor skills and our language comprehension about those motor skills. Since embodied cognition connects the body with our cognition, the sports domain provides a logical domain to study it.


Their initial look at this concept was in a 2006 study titled, "Expertise and its embodiment: Examining the impact of sensorimotor skill expertise on the representation of action-related text", where the team designed an experiment to compare the knowledge representation skill of experienced hockey players and novices. Each group first read sentences describing both hockey-related action and common, "every-day" action, (i.e. "the referee saw the hockey helmet on the bench" vs. "the child saw the balloon in the air"). They were then shown pictures of the object mentioned in the sentences and were asked if the picture matched the action in the sentence they read.

Both groups, the athletes and the novices, responded equally in terms of accuracy and response time to the everyday sentences and pictures, but the athletes responded significantly faster to the hockey-specific sentences and pictures. The conclusion is that those with the sensorimotor experience of sport give them an advantage of processing time over those that have not had that same experience.


Now, you may be saying, "Ya' think!?" to this somewhat obvious statement that people who have played hockey will respond faster to sentence/picture relationships about hockey than non-hockey players. Stay with us here for a minute, as the 2006 study set the groundwork for Beilock's team to take the next step with the question, "is there any evidence that the athletes are using different parts of their brain when processing these match or no match decisions?" The link between our physical skill memory and our language comprehension would be at the base of the embodied cognition theory. 

So, in the latest research, the HPL team kept the same basic experimental design, but now wanted to watch the participants' brain activity using fMRI scanning. This time, there were three groups, hockey players, avid fans of hockey and novices who had no playing or viewing experience with hockey at all. First, all groups passively listened to sentences about hockey actions and also sentences about everyday actions while being monitored by fMRI.  Second, outside of the fMRI scanner, they again listened to hockey-related and everyday-related action sentences and then were shown pictures of hockey or every day action and asked if there was a match or mis-match between the sentence and the picture.


This comprehension test showed similar results as in 2006, but now the team could try to match the relative skill in comprehension to the neural activity shown in the fMRI scans when listening. Both the players and the fans showed increased activity in the left dorsal premotor cortex, a region thought to support the selection of well-learned action plans and procedures. 

You might be surprised that the fans' brains showed activity in the same regions as the athletes. We saw this effect in a previous post, "Does Practice Make Perfect", where those that practiced a new dance routine and those that only watched it showed similar brain area activity. On the other side, the total novices showed activity in the bilateral primary sensory-motor cortex, an area typically known for carrying out step by step instructions for new or novel tasks. 

So, the interesting finding here is that those with experience, either playing or watching, are actually calling on additional neural networks in their brains to help their normal language comprehension abilities. In other words, the memories of learned actions are linked and assist other cognitive tasks. That sounds pretty much like the definition of embodied cognition and Dr. Beilock's research has helped that theory take another step forward. In her words, "Experience playing and watching sports has enduring effects on language understanding by changing the neural networks that support comprehension to incorporate areas active in performing sports skills."


Take pride in your own brain the next time you hear, "Kobe dribbles the ball to the top of the key, crosses over, drives the lane, and finger rolls over Duncan for two." If you can picture that play in your mind, your left dorsal premotor cortex just kicked into gear!


ResearchBlogging.org






S. L. Beilock, I. M. Lyons, A. Mattarella-Micke, H. C. Nusbaum, S. L. Small (2008). Sports experience changes the neural processing of action language Proceedings of the National Academy of Sciences DOI: 10.1073/pnas.0803424105



Lauren E. Holt, Sian L. Beilock (2006). Expertise and its embodiment: Examining the impact of sensorimotor skill expertise on the representation of action-related text Psychonomic Bulletin & Review, 13 (4), 694-701 PMID: 17201372

Does Practice Make Perfect?


For years, sport science and motor control research has added support to the fundamental assertions that "practice makes perfect" and "repetition is the mother of habit".  Shooting 100 free throws, kicking 100 balls on goal or fielding 100 ground balls must certainly build the type of motor programs in the brain that will only help make the 101st play during the game.  K. Anders Ericsson, the "expert on experts", has defined the minimum amount of "deliberate practice" necessary to raise any novice to the level of expert as 10 years or 10,000 hours.

However, many questions still exist as to exactly how we learn these skills.  What changes happen in our brains when we teach ourselves a new task?  What is the most effective and efficient way to master a skill?  Do we have to be actually performing the skill to learn it, or could we just watch and learn? 


Then, once we have learned a new skill and can repeat it with good consistency, why can't we perform it perfectly every time?  Why can't we make every free throw, score with every shot on goal, and field each ground ball with no errors?  We would expect our brain to just be able to repeat this learned motor program with the same level of accuracy.

To answer these questions, we look at two recent studies.  The first, by a team at Dartmouth's Department of Psychological and Brain Sciences, led by Emily Cross, who is now a post-doc at Max Planck Institute for Cognitive and Brain Sciences in Leipzig, Germany, wanted to know if we need to physically perform a new task to learn it, or if merely observing others doing it would be enough. 

The "task" they chose was to learn new dance steps from a video game eerily similar to "Dance, Dance Revolution".  If you (or your kids) have never seen this game, its a video game that you actually get up off the couch and participate in, kind of like the Nintendo Wii.  In this game, a computer screen (or TV) shows you the dance moves and you have to imitate them on a plastic mat on the floor connected to the game.  If you make the right steps, timed to the music, you score higher.

Cross and the team "taught" their subjects in three groups.  The first group was able to view and practice the new routine.  The second group only was allowed to watch the new routine, but not physically practice it.  The third group was a control group that did not get any training at all.  The subjects were later scanned using functional magnetic resonance imaging (fMRI) while they watched the same routine they had either learned (actively or passively) or not seen (the control group).


As predicted, they found that the two trained groups showed common activity in the Action Observance Network (AON) in the brain (see image on left), a group of neural regions found mostly in the inferior parietal and premotor cortices of the brain (near the top of the head) responsible for motor skills and some memory functions.  In other words, whether they physically practised the new steps or just watched the new steps, the same areas of the brain were activated and their performance of the new steps were significantly similar.  The team put together a great video summarizing the experiment.  

One of the themes from this study is that, indeed, learning a motor skill takes place in the brain.  This may seem like an obvious statement, but its important to accept that the movements that our limbs make when performing a skill are controlled by the instructions provided from the brain.  So, what happens when the skill breaks down?  Why did the quarterback throw behind the receiver when we have seen him make that same pass accurately many times?  


To stay true to our theme, we have to blame the brain.  It may be more logical to point to a mechanical breakdown in the player's form or body movements, but the "set-up" for those movements starts with the mental preparation performed by the brain.


In the second study, electrical engineers at Stanford University took a look at these questions to try to identify where the inconsistencies of movement start.  They chose to focus on the "mental preparation" stage which occurs just before the actual movement.  During this stage, the brain plans the coordination and goal for the movement prior to initiating it.  The team designed a test where monkeys would reach for a green dot or a red dot.  If green, they were trained to reach slowly for the dot; if red, to reach quickly.  By monitoring the areas of the monkeys' brains through fMRI, they observed activity in the AON prior to the move and during the move.  


Over repeated trials, changes in reach speed were associated with changes in pre-movement activity.  So, instead of perfectly consistent reach times by the monkeys, they saw variation, like we might see when trying to throw strikes with a baseball many times in a row.  Their conclusion was that this planning activity in the brain does have an effect on the outcome of the activity.  Previously, research had focused only on breakdowns during the actual move and in the mechanics of muscles.  This study shows that the origin of the error may start earlier.


As electrical engineering Assistant Professor Krishna Shenoy stated, "the main reason you can't move the same way each and every time, such as swinging a golf club, is that your brain can't plan the swing the same way each time."  

Postdoctoral researcher and co-author Mark Churchland added, "The nervous system was not designed to do the same thing over and over again.  The nervous system was designed to be flexible. You typically find yourself doing things you've never done before." 
The Stanford team also has made a nice short video synopsis of their study.

Does practice make perfect?  First, we must define "practice".  We saw that it could be either active or passive.  Second, we know sports skills are never "perfect" all the time, and need to understand where the error starts before we can begin to fix it.