Baseball Brains - Pitching Into The World Series




With the MLB League Championship Series' beginning this week, Twenty-six teams are wondering what it takes to reach the "final four" of baseball which leads to the World Series. The Red Sox, Rays, Phillies and Dodgers understand its not just money and luck. Over 162 games, it usually comes down to the fundamentals of baseball: pitching, hitting and catching. That sounds simple enough. So, why can't everyone execute those skills consistently? Why do pitchers struggle with their control? Why do batters strike out? Why do fielders commit errors? It turns out Yogi Berra was right when he said, "Baseball is 90% mental, and the other half is physical." In this three part series, each skill will be broken down into its cognitive sub-tasks and you may be surprised at the complexity that such a simple game requires of our brains.

First up, pitching or even throwing a baseball seems effortless until the pressure is on and the aim goes awry. Pitching a 3" diameter baseball 60 feet, 6 inches over a target that is 8 inches wide requires an accuracy of 1/2 to 1 degree. Throwing it fast, with the pressure of a game situation makes this task one of the hardest in sports. In addition, a fielder throwing to another fielder from 40, 60 or 150 feet away, sometimes off balance or on the run, tests the brain-body connection for accuracy. So, how do we do it? And how can we learn to do it more consistently? In his book, The Psychology of Baseball , Mike Stadler, professor of psychology at the University of Missouri, addresses each of these questions.

There are two dimensions to think about when throwing an object at a target: vertical and horizontal. The vertical dimension is a function of the distance of the throw and the effect of gravity on the object. So the thrower's estimate of distance between himself and the target will determine the accuracy of the throw vertically. Basically, if the distance is underestimated, the required strength of the throw will be underestimated and will lose the battle with gravity, resulting in a throw that will be either too low or will bounce before reaching the target. An example of this is a fast ball which is thrown with more velocity, so will reach its target before gravity has a path-changing effect on it. On the other hand, a curve ball or change-up may seem to curve downward, partly because of the spin put on the ball affecting its aerodynamics, but also because these pitches are thrown with less force, allowing gravity to pull the ball down. In the horizontal dimension, the "right-left" accuracy is related to more to the "aim" of the throw and the ability of the thrower to adjust hand-eye coordination along with finger, arm, shoulder angles and the release of the ball to send the ball in the intended direction.

So, how do we improve accuracy in both dimensions? Prof. Stadler points out that research shows that skill in the vertical/distance estimating dimension is more genetically determined, while skill horizontally can be better improved with practice. Remember those spatial organization tests that we took that show a set of connected blocks in a certain shape and then show you four more sets of conected blocks? The question is which of the four sets could result from rotating the first set of blocks. Research has shown that athletes that are good at these spatial relations tests are also accurate throwers in the vertical dimension. Why? The thought is that those athletes are better able to judge the movement of objects through space and can better estimate distance in 3D space. Pitchers are able to improve this to an extent as the distance to the target is fixed. A fielder, however, starts his throw from many different positions on the field and has more targets (bases and cut-off men) to choose from, making his learning curve a bit longer.

If a throw or pitch is off-target, then what went wrong? Research has shown that
despite all of the combinations of fingers, hand, arm, shoulder and body movements, it seems to all boil down to the timing of the finger release of the ball. In other words, when the pitcher's hand comes forward and the fingers start opening to allow the ball to leave. The timing of this release can vary by hundredths of a second but has significant impact on the accuracy of the throw. But, its also been shown that the throwing action happens so fast, that the brain could not consciously adjust or control that release in real-time. This points to the throwing action being controlled by what psychologists call an automated "motor program" that is created through many repeated practice throws. But, if a "release point" is incorrect, how does a pitcher correct that if they can't do so in real-time? It seems they need to change the embedded program by more practice.

Another component of "off-target" pitching or throwing is the psychological side of a player's mental state/attitude. Stadler identifies research that these motor programs can be called up by the brain by current thoughts. There seems to be "good" programs and "bad" programs, meaning the brain has learned how to throw a strike and learned many programs that will not throw a strike. By "seeding" the recall with positive or negative thoughts, the "strike" program may be run, but so to can the "ball" program. So, if a pitcher thinks to himself, "don't walk this guy", he may be subconsciously calling up the "ball" program and it will result in a pitch called as a ball. So, this is why sports pscyhologists stress the need to "think positively", not just for warm and fuzzy feelings, but the brain may be listening and will instruct your body what to do.



So, assuming Josh Beckett of the Red Sox is getting the ball across the plate, will the Rays hit it? That is the topic for next time when we look at hitting an object that is moving at 97 MPH and reaches you in less than half a second.

Putt With Your Brain - Part 2

If there is a poster child sport for our favorite phrase, "Sports Are 80 Percent Mental", it must be golf. Maybe its the slow pace of play that gives us plenty of time to think between shots. Maybe its the "on stage" performance feeling we get when we step up to that first tee in front of our friends (or strangers!) Maybe its the "high" of an amazing approach shot that lands 3 feet from the cup followed by the "low" of missing the birdie putt. 

From any angle, a golf course is the sport psychologist's laboratory to study the mix of emotions, confidence, skill execution and internal cognitive processes that are needed to avoid buying rounds at the 19th hole. Last time, we looked at some of the recent research on putting mechanics, but, as promised, we now turn to the mental side of putting. Sian Beilock and her team at the University of Chicago's Human Performance Lab recently released the latest of a string of research studies on sports performance, or more specifically, how not to choke under pressure. Lucky for us, they chose putting as their sport skill of choice. This ties in with Dr. Beilock's theory of embodied cognition that we featured in Watching Sports Is Good For Your Brain.

An underlying theme to this work is the concept of automaticity, or the ability to carry out sport skills without consciously thinking about them. Performing below expectations (i.e. choking) starts when we allow our minds to step out of this automatic mode and start thinking about the steps to our putting stroke and all of those "swing thoughts" that come with it ("keep your elbows in", "head down", "straight back").


Our brain over analyzes and second-guesses the motor skills we have learned from hundreds of practice putts. Previously, we looked at automaticity in other sports. Of course, a key distinction to the definition of choking is that you are playing "well below expectations". If you normally shoot par, but now start missing easy putts, then there may be distractions that are taking you out of your normal flow. Choking implies a temporary and abnormal event. Automaticity theory would claim that it is these distractions from some perceived pressure to perform that are affecting your game.

Most research into sport skill performance divides the world into two groups, novices and experts. Most sports have their own measures of where the dividing line is between these groups. Expertise would imply performance results not just experience. So, a golfer who has been hacking away for 20 years but still can't break 100 would still be put in the "novice" category.


Sport scientists design experiments that compare performance between the groups given some variables, and then hypothesize on the reason for the observed differences. Beilock, et al have looked at golf putting from several different angles over the years. Their research builds on itself, so let's review in reverse chronological order.

Back in 2001, they began by comparing the two competing theories of choking, distraction theory vs. explicit monitoring theory, and designed a putting experiment to find the better explanation. Distraction theory explains choking by assuming that the task of putting requires your direct attention and that high pressure situations will cause you to perform dual tasks - focus on your putting but also think about the pressure. This theory assumes there is no automaticity in skill learning and that we have to focus our attention on the skill every time.


Explicit monitoring theory claims that over time, as we practice a skill to the point of becoming an "expert", we proceduralize the task so that it becomes "automatic". Then, during a high pressure situation, our brain becomes so concerned about performance that it takes us out of automatic mode and tries to focus on each step of the task. The research supported the explicit monitoring theory as it was shown that the golf putting task was affected by distractions and pressure for the experts but not the novice putters.

So, how do we block out the pressure, so that our automaticity can kick in? Another 2001 study by Beilock looked at mental imagery during putting. Using the same explicit monitoring theory, should we try to think positive thoughts, like "this ball is going in the hole" or "I have made this putt many times"? Also, what happens if a stray negative thought, "don't miss this one!" enters our brain? Should we try to suppress it and replace it with happy self-talk? She set up four groups, one receiving positive comments, one receiving negative comments, one receiving negative comments followed by positive comments and one receiving none as a control group.


As expected, the happy people did improve their putting over the course of the trials, while the negative imagery hurt performance. But, the negative replaced with positive thought group did not show any more improvement over the control group. So, when faced with a high pressure, stressful situation ripe with the possibilities of choking, try to repeat positive thoughts, but don't worry too much if the occasional doubt creeps in.

Our strategy towards putting should also vary depending on our current skill level. While learning the intricacies of putting, novices should use different methods than experts, according to a 2004 study by Beilock, et al. Novice golfers need to pay attention to the step by step components of their swing, and they perform better when they do focus on the declarative knowledge required. 


Expert golfers, however, have practiced their swing or putt so often that it has become "second nature" to the point that if they are told to focus on the individual components of their swing, they perform poorly. The experiment asked both novices and expert golfers to first focus on their actual putting stroke by saying the word "straight" when hitting the ball and to notice the alignment of the putter face with the ball. Next, they were asked to putt while also listening for a certain tone played in the background. When they heard the tone they were to call it out while putting. 

The first scenario, known as "skill-focused", caused the novices to putt more accurately but the experts to struggle. The second scenario, called "dual-task", distracted the novices enough to affect their putts, while the experts were not bothered and their putting accuracy was better. Beilock showed that novices need the task focus to succeed while they are learning to putt, while experts have internalized the putting stroke so that even when asked to do two things, the putting stroke can be put on "auto-pilot".

Finally, in 2008, Beilock's team added one more twist to this debate. Does a stress factor even affect a golfer's performance in their mind before they putt? This time, golfers, divided into the usual novice and expert groups, were asked to first imagine or "image execute" themselves making a putt followed by an actual putt. The stress factor was to perform one trial under a normal, "take all the time you need" time scenario and then another under a speeded or time-limited scenario. 


The novices performed better under the non-hurried scenario in imagining the putt first followed by the actual putt. The experts, however, actually did better in the hurried scenario and worse in the relaxed setting. Again, the automaticity factor explains the differences between the groups.

The bottom line throughout all of these studies is that if you're learning to play golf, which includes putting, you should focus on your swing/stroke but beware of the distractions which will take away your concentration. That seems pretty logical, but for those that normally putt very well, if you feel stress to sink that birdie putt, don't try to focus in on the mechanics of your stroke. Trust the years of experience that has taught your brain the combination of sensorimotor skills of putting.

Just remember the Chevy Chase/Ty Webb philosophy; "I'm going to give you a little advice. There's a force in the universe that makes things happen. And all you have to do is get in touch with it, stop thinking, let things happen, and be the ball.... Nah-na-na-na, Ma-na-na-na...."


ResearchBlogging.orgSian L. Beilock, Thomas H. Carr (2001). On the fragility of skilled performance: What governs choking under pressure? Journal of Experimental Psychology: General, 130 (4), 701-725 DOI: 10.1037//0096-3445.130.4.701

Sian L. Beilock; James A. Afremow; Amy L. Rabe; Thomas H. Carr (2001). "Don't Miss!" The Debilitating Effects of Suppressive Imagery on Golf Putting Performance Journal of Sport and Exercise Psychology, 23 (3)

Beilock S.L.; Bertenthal B.I.; McCoy A.M.; Carr T.H. (2004). Haste does not always make waste: Expertise, direction of attention, and speed versus accuracy in performing sensorimotor skills Psychonomic Bulletin & Review, 11 (2), 373-379

Sian Beilock, Sara Gonso (2008). Putting in the mind versus putting on the green: Expertise, performance time, and the linking of imagery and action The Quarterly Journal of Experimental Psychology, 61 (6), 920-932 DOI: 10.1080/17470210701625626

Putt With Your Brain - Part 1

If Mark Twain thinks golf is "a good walk spoiled", then putting must be a brief pause to make you reconsider ever walking again. With about 50% of our score being determined on the green, we are constantly in search of the "secret" to getting the little white ball to disappear into the cup. Lucky for us, there is no shortage of really smart people also looking for the answer. The first 8 months of 2008 have been no exception, with a golf cart full of research papers on just the topic of putting. 

Is the secret in the mechanics of the putt stroke or maybe the cognitive set-up to the putt or even the golfer's psyche when stepping up to the ball? This first post will focus on the mechanical side and then we'll follow-up next time with a look inside the golfer's mind.

Let's start with a tip that most golf instructors would give, "Keep your head still when you putt". Jack Nicklaus said it in 1974, "the premier technical cause of missed putts is head movement" (from "Golf My Way") and Tiger Woods said it in 2001, "Every good putter keeps the head absolutely still from start to finish" (from "How I Play Golf"). Who would argue with the two greatest golfers of all time? His name is Professor Timothy Lee, from McMaster University, and he wanted to test that observation. So, he gathered two groups of golfers, amateurs with handicaps of 12-40, and professionals with scratch handicaps. Using an infrared tracking system, his team tracked the motion of the putter head and the golfer's head during sixty putts.

As predicted, the amateurs' head moved back in unison with their putter head, something Lee calls an "allocentric" movement, which agrees with the advice that novice golfers move their head. However, the expert golfers did not keep their head still, but rather moved their heads slightly in the opposite direction of the putter head. On the backswing, the golfer's head moved slightly forward; on the forward stroke, the head moved slightly backward. This "egocentric" movement may be the more natural response to maintain a centered, balanced stance throughout the stroke.


"The exact reasons for the opposite coordination patterns are not entirely clear," explains Lee. "However, we suspect that the duffers tend to just sway their body with the motions of the putter. In contrast, the good golfers probably are trying to maintain a stable, central body position by counteracting the destabilization caused by the putter backswing with a forward motion of the head. The direction of head motion is then reversed when the putter moves forward to strike the ball." Does that mean that pro golfers like Tiger are not keeping their heads still? No, just that you may not have to keep your head perfectly still to putt effectively.

So, what if you do have the bad habit of moving your head? Just teach yourself to change your putting motion and you will be cutting strokes off of your score, right? Well, not so fast. Simon Jenkins of Leeds Metropolitan University tested 15 members of the PGA European Tour to see if they could break old physical habits during putting. His team found that players who usually use shoulder movement in their putting action were not able to change their ways even when instructed to use a different motion. Old habits die hard.

Let's say you do keep your head still (nice job!), but you still 3-putt most greens? What's the next step on the road to birdie putts? Of the three main components of a putt, (angle of the face of the putter head on contact, putting stroke path and the impact point on the putter), which has the greatest effect on success? Back in February, Jon Karlsen of the Norwegian School of Sport Sciences in Oslo, asked 71 elite golfers (mean handicap of 1.8) to make a total of 1301 putts (why not just 1300?) from about 12 feet to find out. His results showed that face angle was the most important (80%), followed by putter path (17%) and impact point (3%).

OK, forget the moving head thing and work on your putter blade angle at contact and you will be taking honors at every tee. Wait, Jon Karlsen came back in July with an update. This time he compared green reading, putting technique and green surface inconsistencies to see which of those variables we should discuss with our golf pro. Forty-three expert golfers putted 50 times from varying distances. Results showed that green reading (60%) was the most dominant factor for success with technique (34%) and green inconsistency (6%) trailing significantly.

So, after reading all of this, all you really need is something like the BreakMaster, which will help you read the breaks and the slope to the hole! Then, keep the putter blade square to the ball and don't move your head, at least not in an allocentric way, that is if you can break your bad habit of doing it. No problem, right? Well, next time we'll talk about your brain's attitude towards putting and all the ways your putt could go wrong before you even hit it!

ResearchBlogging.org

Timothy D. Lee, Tadao Ishikura, Stefan Kegel, Dave Gonzalez, Steven Passmore (2008). Head–Putter Coordination Patterns in Expert and Less Skilled Golfers Journal of Motor Behavior, 40 (4), 267-272 DOI: 10.3200/JMBR.40.4.267-272


Jenkins, Simon (2008). Can Elite Tournament Professional Golfers Prevent Habitual Actions in Their Putting Actions? International Journal of Sports Science & Coaching, 3 (1), 117-127


Jon Karlsen, Gerald Smith, Johnny Nilsson (2007). The stroke has only a minor influence on direction consistency in golf putting among elite players Journal of Sports Sciences, 26 (3), 243-250 DOI: 10.1080/02640410701530902

Video Games Move From The Family Room To The Locker Room

It sounds like a sales job from a 12 year old; "Actually, Dad, this is not just another video game. Its a virtual, scenario-based microcosm of real world experiences that will enhance my decision-making abilities and my cognitive perceptions of the challenges of the sport's environment."  You respond with, "So, how much is Madden 09?"  

With over 5 million copies of Madden 08 sold, the release of the latest version two weeks ago is rocketing up the charts.  Days and late nights are being spent all over the world creating rosters, customizing plays and playing entire seasons, all for pure entertainment purposes.  Can all of those hours spent with controller in hands actually be beneficial to young athletes?  Shouldn't they be outside in the fresh air and sunshine playing real sports?  Well, yes, to both questions.


Playing video games, (aka "gaming"), as a form of learning has been receiving increased recent attention from educational psychology researchers.  At this month's American Psychological Association annual convention, several groups of researchers presented studies of the added benefits of playing video games, from problem-solving and critical thinking to better scientific reasoning.  

In one of the studies by Fordham University psychologist Fran C. Blumberg, PhD, and Sabrina S. Ismailer, MSED, 122 fifth-, sixth- and seventh-graders' problem-solving behavior was observed while playing a video game that they had never seen before.  As the children played the game, they were asked to think aloud for 20 minutes. Researchers assessed their problem-solving ability by listening to the statements they were making while playing.   

The results showed that playing video games can improve cognitive and perceptual skills.  "Younger children seem more interested in setting short-term goals for their learning in the game compared to older children who are more interested in simply playing and the actions of playing," said Blumberg. "Thus, younger children may show a greater need for focusing on small aspects of a given problem than older children, even in a leisure-based situation such as playing video games."

Also, in a recent article on video game learning, David Williamson Shaffer, professor of educational psychology at the University of Wisconsin-Madision and author of the book "How Computer Games Help Children Learn", argues that if a game is realistically based on real-world scenarios and rules, it can help the child learn.  “The question though is," Shaffer said, "is what they are doing a good simulation of what is happening in the real world?"  Shaffer explains the research happening on this topic at his UW lab, named Epistemic Games:





Support for this new era of learning tools is coming from other interesting people, as well.  George Lucas of Star Wars fame has an educational foundation, Edutopia, which has shown recent interest in simulation learning.  Here is their introductory overview and accompanying video:






There are some words of caution out there.  In a recent article, educational psychologist Jane M. Healy, author of "Failure to Connect: How Computers Affect our Children's Minds and What We Can Do About It," urges educators to proceed carefully.  "The main question is whether the activity, whatever it is, is educationally valid and contributes significantly to whatever is being studied," she says.  "The point is not whether kids are 'playing' with learning, or what medium they are playing in — a ball field or a Wii setup or a physics lab or art studio — but rather why they are doing it.  Just because it is electronic does not make it any better, and it may turn out not to be as valuable."

If we accept that there is some validity to teaching/learning with video game simulations, how can we move this to the sports arena?  Obviously, there is no substitute for playing the real game with real players, opponents, pressure, etc., but more teams and coaches are turning to simulation games for greater efficiency in the learning process.  If the objective is to expose players to plays, tactics, field vision and critical thinking, then a gaming session can begin to introduce these concepts that will be validated later on the field during "real" practice.  

This homework can also be done at home, not requiring teammates, fields, equipment, etc.  As mentioned in the videos above, another driving factor in the use of games is to reach this young, Web 2.0 audience through a medium that they already know, understand and enjoy.  The motivation to learn is inherent with the use of games.  The "don't tell them its good for them" secret is key to seeing progress with this type of training.


One of the best examples of video game adaptation for sports learning is from XOS Technologies and their modified version of the Madden NFL game.  In 2007, they licensed the core development engine from EA Sports and created a football simulation, called SportMotion, that can be used for individual training.  

With the familiar Madden user interface, coaches can first load their playbook into the game, as well as their opponent's expected plays.  Then, the athlete can "play" the game but will now see their own team's plays being run by the virtual players.  Imagine the difference in learning style for a new quarterback.  Instead of studying static X's and O's on a two-dimensional piece of paper, they can now watch and then play a virtual simulation of the same play in motion against a variety of different defenses.  With a "first-person" view of the play unfolding, they will see the options available in a "real-time" mode which will force faster reaction and decision-making skills.  

To take the simulation one step further, XOS has added a virtual reality option that takes the game controller out of the player's hands and replaces it with a VR suit and goggles allowing him to physically play the game, throw the ball, etc. through his virtual eyes.  Take a look at this promotional video from XOS:





XOS is winning some high praise for its system, including none other than Phillip Fulmer, Head Coach of the University of Tennesee football team.  “We’re leading the nation by taking advantage of this cutting-edge technology and we couldn’t be more pumped about it,” Fulmer said. “UT football has a long and storied tradition of success and because we look to pioneer groundbreaking concepts before anyone else, we’ll proudly continue that history. The XOS PlayAction Simulator begins a new chapter for UT and we’re pleased to add it to our football training regiment.” 

Albert Tsai, vice president of advanced research at XOS Technologies, says, “We’ve basically added functionality to popular EA video games such as customizable playbooks, diagrams and testing sequences to better prepare athletes for specific opponents.  Additionally, the software includes built-in teaching and reporting tools so that coaches Fulmer, Cutcliffe and Cooter can analyze and track the tactical-skill development of the team. At the same time, the Volunteers can experience immediate benefits because the familiarity with the EA SPORTS brand requires little to no learning curve for their players.”

So, the next time your son (or daughter!) is begging for 10 more minutes on the Xbox to make sure the Packers destroy the Vikings once again (sorry, a little Wisconsin bias), you may want to reconsider pulling the plug.  Then, send them outside for that fresh air.

Starbucks' Secret Sports Supplement

For an athlete, it seems to good to be true. A "sports supplement" that increases alertness, concentration, reaction time and focus while decreasing muscle fatigue or at least the perception of fatigue. It can even shorten recovery time after a game. HGH? EPO? Steroids? Nope, just a grande cup of Juan Valdez's Best, Liquid Lightning, Morning Mud, Wakey Juice, Mojo, Java, aka coffee. Actually, the key ingredient is caffeine which has been studied repeatedly for its ergogenic (performance-enhancing) benefits in sports, both mentally and physically. Time after time, caffeine proves itself as a relatively safe, legal and inexpensive boost to an athlete.

Or does it? If caffeine is such a clear cut performance enhancing supplement, why did the World Anti-Doping Agency (WADA), who also monitors this month's Beijing Olympics for the International Olympic Committee (IOC), first add caffeine to its banned substance list, only to remove it in 2004? At the time that it was placed on the banned list, the threshold for a positive caffeine test was set to a post-exercise urinary caffeine concentration of 12 µg/ml (about 3-4 cups of strong coffee). However, more recent research has shown that caffeine has ergogenic effects at levels as low as the equivalent of 1-2 cups of coffee. So, it was hard for WADA to know where to draw the line between athletes just having a few morning cups of coffee/tea or maybe some chocolate bars and athletes that were intentionally consuming caffeine to increase their performance level. However, caffeine is still on the WADA monitoring list as a substance to screen for and watch for patterns of use.


Meanwhile, athletes are still convinced that caffeine helps them.
In a recent survey from Liverpool John Moores University, 480 athletes were interviewed about their caffeine use. One third of track and field athletes and 60% of cyclists reported using caffeine specifically to give them a boost in competition. In addition, elite-level athletes interviewed were more likely to rely on caffeine than amateurs. Dr. Neil Chester, co-leader of the study, commented about the confusion created by the WADA status change for caffeine, "There's been a lack of communication from WADA and there is a question about whether or not sporting authorities are condoning its use. Ultimately there is a need to clarify the use of caffeine within the present anti-doping legislation."

So, have athletes found a loophole to exploit that gives them an edge? Dr. Carrie Ruxton recently completed a literature survey to summarize 41 double-blind, placebo-controlled trials published over the past 15 years to establish what range of caffeine consumption would maximize benefits and minimize risk for cognitive function, mood, physical performance and hydration. The studies were divided into two categories, those that looked at the cognitive effects and those that looked at physical performance effects. The results concluded that there was a significant improvement in cognitive functions like attention, reaction time and mental processing as well as physical benefits described as increased "time to exhaustion" and decreased "perception of fatigue" in cycling and running tests. Longer, endurance type exercise showed greater results than short-term needs for energy.

Given these results, how exactly does caffeine perform these wonderful tricks? Dr. Ruxton explains from the study, "Caffeine is believed to impact on mood and performance by inhibiting the binding of both adenosine and benzodiazepine receptor ligands to brain membranes. As these neurotransmitters are known to slow down brain activity, a blockade of their receptors lessens this effect. " Bottom line, the chemicals in your brain that would cause you to feel tired are blocked, giving you a feeling of ongoing alertness. Your body still needs the sleep, caffeine just delays the feeling of being tired.

As to the physiological benefits, caffeine has also been shown to stimulate the release of fat into the bloodstream. The early conclusion was that the increased free fatty acids in the blood would allow our muscles to use fat as fuel and spare glycogen (carbohydrates) allowing us to exercise longer. Another theory is that caffeine stimulates the central nervous system reducing our perception of effort so that we feel that we can continue at an increased pace for longer periods.


The discussion on glycogen has recently taken another interesting twist; caffeine's apparent ability to replenish glycogen (the body's primary fuel source) more rapidly
after an intense workout. A team at the Garvan Institute for Medical Research has found that athletes who consumed a combination of carbohydrates and caffeine following an exhaustive exercise had 66% more glycogen in their muscles four hours later, compared to when they consumed carbohydrates alone. 

They asked cyclists to pedal to exhaustion in the lab, then gave them a drink that contained either carbohydrates with caffeine or just carbohydrates (the cyclists did not know which drink they were getting). They repeated the process 7-10 days later and reversed the groups. Muscle biopsies and blood samples were tested for levels of glycogen after each trial period. The researchers did not have an explanation for the increased levels of glycogen resulting from the caffeine-spiked juice. One theory is the higher circulating blood glucose and plasma insulin levels caused by the caffeine were key factors. In addition, caffeine may increase the activity of several signaling enzymes, including the calcium-dependent protein kinase and protein kinase B (also called Akt), which have roles in muscle glucose uptake during and after exercise.

So, before you start drinking the Starbucks by the gallon, here are some guidelines.
You can consume 2-2.5 mg of caffeine per pound of body weight daily to achieve its ergogenic effects. This equates to 250-312 mg for a 125-pound woman and 360-450 mg for a 180-pound man. More is not better, as other research has shown a decline in benefit and an increase in caffeine's side effects beyond this level. One "grande" cup (16 oz.) of Starbucks coffee contains about 320-500 mg of caffeine, while a 12 oz. can of soda will provide 35-70 mg of caffeine. Maybe we'll see the ultimate sports drink soon, kind of like Monster meets Gatorade... wait, its already here: Lucozade Sport with Caffeine Boost!

ResearchBlogging.org





C. H. S. Ruxton (2008). The impact of caffeine on mood, cognitive function, performance and hydration: a review of benefits and risks Nutrition Bulletin, 33 (1), 15-25 DOI: 10.1111/j.1467-3010.2007.00665.x


N. Chester, N. Wojek (2008). Caffeine Consumption Amongst British Athletes Following Changes to the 2004 WADA Prohibited List International Journal of Sports Medicine, 29 (6), 524-528 DOI: 10.1055/s-2007-989231

D. J. Pedersen, S. J. Lessard, V. G. Coffey, E. G. Churchley, A. M. Wootton, T. Ng, M. J. Watt, J. A. Hawley (2008). High rates of muscle glycogen resynthesis after exhaustive exercise when carbohydrate is coingested with caffeine Journal of Applied Physiology, 105 (1), 7-13 DOI: 10.1152/japplphysiol.01121.2007

Inside An Olympian's Brain


Michael Phelps, Nastia Liukin, Misty May-Treanor and Lin Dan are four Olympic athletes who have each spent most of their life learning the skills needed to reach the top of their respective sports, swimming, gymnastics, beach volleyball and badminton (you were wondering about Lin, weren't you...) Their physical skills are obvious and amazing to watch. For just a few minutes, instead of being a spectator, try to step inside the heads of each of them and try to imagine what their brains must accomplish when they are competing and how different the mental tasks are for each of their sports.


On a continuum from repetitive motion to reactive motion, these four sports each require a different level of brain signal to muscle movement. Think of Phelps finishing off one more gold medal race in the last 50 meters. His brain has one goal; repeat the same stroke cycle as quickly and as efficiently as possible until he touches the wall. There isn't alot of strategy or novel movement based on his opponent's movements. Its simply to be the first one to finish. 

What is he consciously thinking about during a race? In his post-race interviews, he says he notices the relative positions of other swimmers, his energy level and the overall effort required to win (and in at least one race, the level of water in his goggles.) At his level, the concept of automaticity (as discussed in a previous post) has certainly been reached, where he doesn't have to consciously "think" about the components of his stroke. In fact, research has shown that those who do start analyzing their body movements during competition are prone to errors as they take themselves out of their mental flow.


Moving up the continuum, think about gymnastics. Certainly, the skills to perform a balance beam routine are practiced to the point of fluency, but the skills themselves are not as strictly repetitive as swimming. There are finer points of each movement being judged so gymnasts keep several mental "notes" about the current performance so that they can "remember" to keep their head up or their toes pointed or to gather speed on the dismount. There also is an order of skills or routine that needs to be remembered and activated.

While swimming and gymnastics are battles against yourself and previously rehearsed movements, sports like beach volleyball and badminton require reactionary moves directly based on your opponents' movements. Rather than being "locked-in" to a stroke or practised routine, athletes in direct competition with their opponents must either anticipate or react to be successful.



So, what is the brain's role in learning each of these varied sets of skills and what commands do our individual neurons control? Whether we are doing a strictly repetitive movement like a swim stroke or a unique, "on the fly" move like a return of a serve, what instructions are sent from our brain to our muscles? Do the neurons of the primary motor cortex (where movement is controlled in the brain) send out signals of both what to do and how to do it?

Researchers at the McGovern Institute for Brain Research at MIT led by Robert Ajemian designed an experiment to solve this "muscles or movement" question. They trained adult monkeys to move a video game joystick so that a cursor on a screen would move towards a target. While the monkeys learned the task, they measured brain activity with functional magnetic resonance imaging (fMRI) to compare the actual movements of the joystick with the firing patterns of neurons. 

The researchers then developed a model that allowed them to test hypotheses about the relationship between neuronal activity that they measured in the monkey's motor cortex and the resulting actions. They concluded that neurons do send both the specific signals to the muscles to make the movement and a goal-oriented instruction set to monitor the success of the movement towards the goal. Here is a video synopsis of a very similar experiment by Miguel Nicolelis, Professor of Neurobiology at Duke University:


To back this up, Andrew Schwartz, professor of neurobiology at the McGowan Institute for Regenerative Medicine at the University of Pittsburgh School of Medicine, and his team of researchers wanted to isolate the brain signals from the actual muscles and see if the neuron impulses on their own could produce both intent to move and the movement itself. They taught adult monkeys to feed themselves using a robotic arm while the monkey's own arms were restrained. Instead, tiny probes the width of a human hair were placed in the monkey's motor cortex to pick up the electrical impulses created by the monkey's neurons. These signals were then evaluated by software controlling the robotic arm and the resulting movement instructions were carried out. The monkeys were able to control the arm with their "thoughts" and feed themselves food. Here is a video sample of the experiment:

"In our research, we've demonstrated a higher level of precision, skill and learning," explained Dr. Schwartz. "The monkey learns by first observing the movement, which activates his brain cells as if he were doing it. It's a lot like sports training, where trainers have athletes first imagine that they are performing the movements they desire."



It seems these "mental maps" of neurons in the motor cortex are the end goal for athletes to achieve the automaticity required to either repeat the same rehearsed motions (like Phelps and Liukin) or to react instantly to a new situation (like May-Treanor and Dan). Luckily, we can just practice our own automaticity of sitting on the couch and watching in a mesemerized state.

ResearchBlogging.org

R AJEMIAN, A GREEN, D BULLOCK, L SERGIO, J KALASKA, S GROSSBERG (2008). Assessing the Function of Motor Cortex: Single-Neuron Models of How Neural Response Is Modulated by Limb Biomechanics Neuron, 58 (3), 414-428 DOI: 10.1016/j.neuron.2008.02.033

Meel Velliste, Sagi Perel, M. Chance Spalding, Andrew S. Whitford, Andrew B. Schwartz (2008). Cortical control of a prosthetic arm for self-feeding Nature, 453 (7198), 1098-1101 DOI: 10.1038/nature06996