Coaches Should Reward The Effort More Than The Skill

young soccer players
As parents and coaches of youth athletes, we walk a fine line in our communications with our emerging superstars about their abilities.  What may sound like a great pat on the back, (“that was amazing how you just knew to make that pass – you’ve really got a knack for this sport”), may actually limit their future development and motivation, according to two development psychologists.

It all goes back to the fundamental debate in talent development of any kind.  Are we born with certain skills and expertise or do we develop it with years of structured practice?  Researchers have argued along the entire spectrum of this question while practitioners have settled somewhere in the middle.  Even if kids start with some genetic advantages, they still need plenty of practice time to achieve greatness.

Committing to those years of training requires the right mindset and belief that those hours on the field or court will actually help.  The best teachers have learned this in the classroom by convincing students that they are in control of their development rather than being labeled “smart” or “not smart.”

Jim Stigler, a psychology professor at the University of Michigan, saw this first hand years ago when visiting classrooms in Japan.  In a recent NPR Morning Edition segment, he told the story of observing a fourth grade math class and one student’s breakthrough.  The teacher asked one student who had been struggling to draw a three-dimensional cube to go to the chalkboard, in front of the whole class, and give it a try.

After a few minutes of failure in front of his peers, Stigler waited for the poor student to break down.  ”I realized that I was sitting there starting to perspire,” Stigler remembered, “because I was really empathizing with this kid. I thought, ‘This kid is going to break into tears!’ ”

However, with his classmates encouragement, he finally got it right and was rewarded with applause and a real sense of accomplishment when he returned to his seat.

Now, as a researcher in learning theory, Stigler draws comparisons between this style of learning and what is seen in most American classrooms. “I think that from very early ages we [in America] see struggle as an indicator that you’re just not very smart,” Stigler said. “It’s a sign of low ability — people who are smart don’t struggle, they just naturally get it, that’s our folk theory. Whereas in Asian cultures they tend to see struggle more as an opportunity.”

Our youth sports culture is similar to the classroom.  Kids who are divided into “A” or “B” teams at an early age are taught that their development path is set; the skills they have now are the same skills they will have in the future.  It becomes a self-fulfilling cycle as the “A” teams get better coaching, play in the better leagues against better competition and the talent gap widens.

Often, parents can also, unknowingly, contribute to this cycle.  As in school, when a child is told that his or her success is due to his brain not his effort, the perception begins that when they do eventually struggle with a math test or a tougher opponent, there is little they can do to improve.

Jin Li, a psychology professor at Brown University, has also been studying cultural differences in learning and teaching.  One of her research projects recorded conversations between parents and children to hear the language used.  There were subtle differences between American and Asian parents when complimenting their kids.  While the Americans praised with phrases like, “you’re so smart”, Asian parents focused on the struggle, “you’ve worked so hard on learning that and now you did it.”

“So the focus is on the process of persisting through it despite the challenges, not giving up, and that’s what leads to success,” Li said in the same NPR interview.

Every young athlete will face challenges as they move up the ladder from youth clubs to high school to college.  Instilling them with the belief that they can improve through hard work will keep them motivated to get to the other side of the wall.  Their support team of parents and coaches can help this process by rewarding the learning process.

“Think about that [kind of behavior] spread over a lifetime,” Stigler concluded. “That’s a big difference.”

Join Axon Sports on Twitter and Facebook

Rotate It Like Ronaldo?





"Rotate it like Ronaldo" just doesn't have the same ring to it as "Bend it like Beckham", but the curving free kick is still one of the most exciting plays in soccer/football. Starting with Rivelino in the 1970 World Cup and on to the specialists of today, more players know how to do it and understand the basic physics behind it, but very few can perfect it. But, when it does happen, by chance or skill, it is the highlight of the game.



But let's take a look at this from the other side, through the eyes of the goalkeeper. Obviously, its their job to anticipate where the free kick is going and get to the spot before the ball crosses the line. He sets up his wall to, hopefully, narrow the width of the target, but he knows some players are capable of bending the ball around or over the wall towards the near post. If you watch highlights of free kick goals, you often see keepers flat-footed, just watching the ball go into the top corner. Did they guess wrong and then were not able to react? Did they guess right but misjudged the flight trajectory of the ball. How much did the sidespin or "bend" affect their perception of the exact spot where the ball will cross the line? To get an idea of the effect of spin, here's a compilation of Beckham's best free kick goals (there's a 15 second intro, then the highlights) :







Researchers at Queen's University Belfast and the University of the Mediterranean in France tried to figure this out in this paper. They wanted to compare the abilities of expert field players and expert goalkeepers to accurately predict if a free kick would result in an on-target goal or off-target non-goal. First, a bit about why the ball "bends". We can thank what's called the "Magnus Force" named after the 19th-century German physicist Gustav Magnus. As seen in the diagram below, as the ball spins counter clockwise (for a right-footed player using his instep and kicking the ball on the right side), the air pressure on the left side of the ball is lower as the spin is in the same direction as the oncoming air flow. On the right side of the ball, the spin is in the opposite direction of the air flow, building higher pressure. The ball will follow the path of least resistance, or pressure, and "bend" or curve from right to left. The speed of the spin and the velocity of the shot will determine the amount of bend. For a clockwise spin, the ball bends from left to right.







The researchers showed the players three different types of simulated kicks, a kick bent to the right, a kick bent to the left and a kick with no spin at all. They showed the players these simulations with virtual reality headsets and computer controlled "kicks" and "balls" which they could vary in flight with different programming. The balls would disappear from view at distances of 10 and 12.5 meters from the goal. The reasoning is that this cutoff would correspond with the deadline for reaction time to make a save on the ball. In other words, if the keeper does not correctly guess the final trajectory and position of the ball by this point, he most likely will not be able to physically get to the ball and make the save.







The results showed that both the players and the keepers, (all 20 were expert players from elite clubs like AC Milan, Marseille, Bayer Leverkusen, Schalke 04), were able to correctly predict the result of the kicks with no spin added. However, as 600 RPM spin, either clockwise or counter-clockwise, was added to the ball, the players success declined significantly. Interestingly, the keepers did no better, statistically, then the field players. The researchers conclusion was that the players used the "current heading direction" of the ball to predict the final result, rather than factoring the future affect of the acceleration and change in trajectory caused by the spin.



Just as we saw in the Baseball Hitting post, our human perception skill in tracking flying objects, especially those that are spinning and changing direction, are not perfect. If we understand the physics of the spinning ball, we can better guess at its path, but the pitcher or the free kick taker doesn't usually offer this information beforehand!



Craig, C.M., Berton, E., Rao, G., Fernandez, L., Bootsma, R.J. (2006). Judging where a ball will go: the case of curved free kicks in football. Naturwissenschaften, 93(2), 97-101. DOI: 10.1007/s00114-005-0071-0

Baseball Brains - Pitching Into The World Series




With the MLB League Championship Series' beginning this week, Twenty-six teams are wondering what it takes to reach the "final four" of baseball which leads to the World Series. The Red Sox, Rays, Phillies and Dodgers understand its not just money and luck. Over 162 games, it usually comes down to the fundamentals of baseball: pitching, hitting and catching. That sounds simple enough. So, why can't everyone execute those skills consistently? Why do pitchers struggle with their control? Why do batters strike out? Why do fielders commit errors? It turns out Yogi Berra was right when he said, "Baseball is 90% mental, and the other half is physical." In this three part series, each skill will be broken down into its cognitive sub-tasks and you may be surprised at the complexity that such a simple game requires of our brains.

First up, pitching or even throwing a baseball seems effortless until the pressure is on and the aim goes awry. Pitching a 3" diameter baseball 60 feet, 6 inches over a target that is 8 inches wide requires an accuracy of 1/2 to 1 degree. Throwing it fast, with the pressure of a game situation makes this task one of the hardest in sports. In addition, a fielder throwing to another fielder from 40, 60 or 150 feet away, sometimes off balance or on the run, tests the brain-body connection for accuracy. So, how do we do it? And how can we learn to do it more consistently? In his book, The Psychology of Baseball , Mike Stadler, professor of psychology at the University of Missouri, addresses each of these questions.

There are two dimensions to think about when throwing an object at a target: vertical and horizontal. The vertical dimension is a function of the distance of the throw and the effect of gravity on the object. So the thrower's estimate of distance between himself and the target will determine the accuracy of the throw vertically. Basically, if the distance is underestimated, the required strength of the throw will be underestimated and will lose the battle with gravity, resulting in a throw that will be either too low or will bounce before reaching the target. An example of this is a fast ball which is thrown with more velocity, so will reach its target before gravity has a path-changing effect on it. On the other hand, a curve ball or change-up may seem to curve downward, partly because of the spin put on the ball affecting its aerodynamics, but also because these pitches are thrown with less force, allowing gravity to pull the ball down. In the horizontal dimension, the "right-left" accuracy is related to more to the "aim" of the throw and the ability of the thrower to adjust hand-eye coordination along with finger, arm, shoulder angles and the release of the ball to send the ball in the intended direction.

So, how do we improve accuracy in both dimensions? Prof. Stadler points out that research shows that skill in the vertical/distance estimating dimension is more genetically determined, while skill horizontally can be better improved with practice. Remember those spatial organization tests that we took that show a set of connected blocks in a certain shape and then show you four more sets of conected blocks? The question is which of the four sets could result from rotating the first set of blocks. Research has shown that athletes that are good at these spatial relations tests are also accurate throwers in the vertical dimension. Why? The thought is that those athletes are better able to judge the movement of objects through space and can better estimate distance in 3D space. Pitchers are able to improve this to an extent as the distance to the target is fixed. A fielder, however, starts his throw from many different positions on the field and has more targets (bases and cut-off men) to choose from, making his learning curve a bit longer.

If a throw or pitch is off-target, then what went wrong? Research has shown that
despite all of the combinations of fingers, hand, arm, shoulder and body movements, it seems to all boil down to the timing of the finger release of the ball. In other words, when the pitcher's hand comes forward and the fingers start opening to allow the ball to leave. The timing of this release can vary by hundredths of a second but has significant impact on the accuracy of the throw. But, its also been shown that the throwing action happens so fast, that the brain could not consciously adjust or control that release in real-time. This points to the throwing action being controlled by what psychologists call an automated "motor program" that is created through many repeated practice throws. But, if a "release point" is incorrect, how does a pitcher correct that if they can't do so in real-time? It seems they need to change the embedded program by more practice.

Another component of "off-target" pitching or throwing is the psychological side of a player's mental state/attitude. Stadler identifies research that these motor programs can be called up by the brain by current thoughts. There seems to be "good" programs and "bad" programs, meaning the brain has learned how to throw a strike and learned many programs that will not throw a strike. By "seeding" the recall with positive or negative thoughts, the "strike" program may be run, but so to can the "ball" program. So, if a pitcher thinks to himself, "don't walk this guy", he may be subconsciously calling up the "ball" program and it will result in a pitch called as a ball. So, this is why sports pscyhologists stress the need to "think positively", not just for warm and fuzzy feelings, but the brain may be listening and will instruct your body what to do.



So, assuming Josh Beckett of the Red Sox is getting the ball across the plate, will the Rays hit it? That is the topic for next time when we look at hitting an object that is moving at 97 MPH and reaches you in less than half a second.

Video Games Move From The Family Room To The Locker Room

It sounds like a sales job from a 12 year old; "Actually, Dad, this is not just another video game. Its a virtual, scenario-based microcosm of real world experiences that will enhance my decision-making abilities and my cognitive perceptions of the challenges of the sport's environment."  You respond with, "So, how much is Madden 09?"  

With over 5 million copies of Madden 08 sold, the release of the latest version two weeks ago is rocketing up the charts.  Days and late nights are being spent all over the world creating rosters, customizing plays and playing entire seasons, all for pure entertainment purposes.  Can all of those hours spent with controller in hands actually be beneficial to young athletes?  Shouldn't they be outside in the fresh air and sunshine playing real sports?  Well, yes, to both questions.


Playing video games, (aka "gaming"), as a form of learning has been receiving increased recent attention from educational psychology researchers.  At this month's American Psychological Association annual convention, several groups of researchers presented studies of the added benefits of playing video games, from problem-solving and critical thinking to better scientific reasoning.  

In one of the studies by Fordham University psychologist Fran C. Blumberg, PhD, and Sabrina S. Ismailer, MSED, 122 fifth-, sixth- and seventh-graders' problem-solving behavior was observed while playing a video game that they had never seen before.  As the children played the game, they were asked to think aloud for 20 minutes. Researchers assessed their problem-solving ability by listening to the statements they were making while playing.   

The results showed that playing video games can improve cognitive and perceptual skills.  "Younger children seem more interested in setting short-term goals for their learning in the game compared to older children who are more interested in simply playing and the actions of playing," said Blumberg. "Thus, younger children may show a greater need for focusing on small aspects of a given problem than older children, even in a leisure-based situation such as playing video games."

Also, in a recent article on video game learning, David Williamson Shaffer, professor of educational psychology at the University of Wisconsin-Madision and author of the book "How Computer Games Help Children Learn", argues that if a game is realistically based on real-world scenarios and rules, it can help the child learn.  “The question though is," Shaffer said, "is what they are doing a good simulation of what is happening in the real world?"  Shaffer explains the research happening on this topic at his UW lab, named Epistemic Games:





Support for this new era of learning tools is coming from other interesting people, as well.  George Lucas of Star Wars fame has an educational foundation, Edutopia, which has shown recent interest in simulation learning.  Here is their introductory overview and accompanying video:






There are some words of caution out there.  In a recent article, educational psychologist Jane M. Healy, author of "Failure to Connect: How Computers Affect our Children's Minds and What We Can Do About It," urges educators to proceed carefully.  "The main question is whether the activity, whatever it is, is educationally valid and contributes significantly to whatever is being studied," she says.  "The point is not whether kids are 'playing' with learning, or what medium they are playing in — a ball field or a Wii setup or a physics lab or art studio — but rather why they are doing it.  Just because it is electronic does not make it any better, and it may turn out not to be as valuable."

If we accept that there is some validity to teaching/learning with video game simulations, how can we move this to the sports arena?  Obviously, there is no substitute for playing the real game with real players, opponents, pressure, etc., but more teams and coaches are turning to simulation games for greater efficiency in the learning process.  If the objective is to expose players to plays, tactics, field vision and critical thinking, then a gaming session can begin to introduce these concepts that will be validated later on the field during "real" practice.  

This homework can also be done at home, not requiring teammates, fields, equipment, etc.  As mentioned in the videos above, another driving factor in the use of games is to reach this young, Web 2.0 audience through a medium that they already know, understand and enjoy.  The motivation to learn is inherent with the use of games.  The "don't tell them its good for them" secret is key to seeing progress with this type of training.


One of the best examples of video game adaptation for sports learning is from XOS Technologies and their modified version of the Madden NFL game.  In 2007, they licensed the core development engine from EA Sports and created a football simulation, called SportMotion, that can be used for individual training.  

With the familiar Madden user interface, coaches can first load their playbook into the game, as well as their opponent's expected plays.  Then, the athlete can "play" the game but will now see their own team's plays being run by the virtual players.  Imagine the difference in learning style for a new quarterback.  Instead of studying static X's and O's on a two-dimensional piece of paper, they can now watch and then play a virtual simulation of the same play in motion against a variety of different defenses.  With a "first-person" view of the play unfolding, they will see the options available in a "real-time" mode which will force faster reaction and decision-making skills.  

To take the simulation one step further, XOS has added a virtual reality option that takes the game controller out of the player's hands and replaces it with a VR suit and goggles allowing him to physically play the game, throw the ball, etc. through his virtual eyes.  Take a look at this promotional video from XOS:





XOS is winning some high praise for its system, including none other than Phillip Fulmer, Head Coach of the University of Tennesee football team.  “We’re leading the nation by taking advantage of this cutting-edge technology and we couldn’t be more pumped about it,” Fulmer said. “UT football has a long and storied tradition of success and because we look to pioneer groundbreaking concepts before anyone else, we’ll proudly continue that history. The XOS PlayAction Simulator begins a new chapter for UT and we’re pleased to add it to our football training regiment.” 

Albert Tsai, vice president of advanced research at XOS Technologies, says, “We’ve basically added functionality to popular EA video games such as customizable playbooks, diagrams and testing sequences to better prepare athletes for specific opponents.  Additionally, the software includes built-in teaching and reporting tools so that coaches Fulmer, Cutcliffe and Cooter can analyze and track the tactical-skill development of the team. At the same time, the Volunteers can experience immediate benefits because the familiarity with the EA SPORTS brand requires little to no learning curve for their players.”

So, the next time your son (or daughter!) is begging for 10 more minutes on the Xbox to make sure the Packers destroy the Vikings once again (sorry, a little Wisconsin bias), you may want to reconsider pulling the plug.  Then, send them outside for that fresh air.