Military Mindfulness Training May Also Help Athletes Handle Stress

A University of Pennsylvania-led study in which training was provided to a high-stress U.S. military group preparing for deployment to Iraq has demonstrated a positive link between mindfulness training, or MT, and improvements in mood and working memory. Mindfulness is the ability to be aware and attentive of the present moment without emotional reactivity or volatility.

The study found that the more time participants spent engaging in daily mindfulness exercises the better their mood and working memory, the cognitive term for complex thought, problem solving and cognitive control of emotions. The study also suggests that sufficient MT practice may protect against functional impairments associated with high-stress challenges that require a tremendous amount of cognitive control, self-awareness, situational awareness and emotional regulation.

To study the protective effects of mindfulness training on psychological health in individuals about to experience extreme stress, cognitive neuroscientist Amishi Jha of the Department of Psychology and Center for Cognitive Neuroscience at Penn and Elizabeth A. Stanley of Georgetown University provided mindfulness training for the first time to U.S. Marines before deployment. Jha and her research team investigated working memory capacity and affective experience in individuals participating in a training program developed and delivered by Stanley, a former U.S. Army officer and security-studies professor with extensive experience in mindfulness techniques.

The program, called Mindfulness-based Mind Fitness Training (MMFT™), aims to cultivate greater psychological resilience or "mental armor" by bolstering mindfulness.

 The program covered topics of central relevance to the Marines, such as integrating skills to manage stress reactions, increase their resilience to future stressors and improve their unit's mission effectiveness. Thus, the program blended mindfulness skills training with concrete applications for the operational environment and information and skills about stress, trauma and resilience in the body.

The program emphasized integrating mindfulness exercises, like focused attention on the breath and mindful movement, into pre-deployment training. These mindfulness skills were to regulate symptoms in the body and mind following an experience of extreme stress. The importance of regularly engaging in mindfulness exercises was also emphasized.

"Our findings suggest that, just as daily physical exercise leads to physical fitness, engaging in mindfulness exercises on a regular basis may improve mind-fitness," Jha said. "Working memory is an important feature of mind-fitness. Not only does it safeguard against distraction and emotional reactivity, but it also provides a mental workspace to ensure quick-and-considered decisions and action plans. Building mind-fitness with mindfulness training may help anyone who must maintain peak performance in the face of extremely stressful circumstances, from first responders, relief workers and trauma surgeons, to professional and Olympic athletes."

Study participants included two military cohorts of 48 male participants with a mean age of 25 recruited from a detachment of Marine reservists during the high-stress pre-deployment interval and provided MT to one group of 31, leaving 17 Marines in a second group without training as a control. The MT group attended an eight-week course and logged the amount of out-of-class time they spent practicing formal exercises. The effect of the course on working memory was evaluated using the Operation Span Task, whereas the impact on positive and negative affect was evaluated using the Positive and Negative Affect Schedule, or PANAS.

The Positive Affect scale reflects the extent to which a person feels enthusiastic, active and alert. The Negative Affect scale reflects unpleasant mood states, such as anger, disgust and fear. Working memory capacity degraded and negative mood increased over time in the control group. A similar pattern was observed in those who spent little time engaging in mindfulness exercises within the MMFT group. Yet, capacity increased and negative mood decreased in those with high practice time over the eight weeks.

The study findings are in line with prior research on Mindfulness Based Stress Reduction, or MBSR, programs and suggest that MMFT may provide "psychological prophylaxis," or protection from cognitive and emotional disturbances, even among high-stress cohorts such as members of the military preparing for deployment. Given the high rate of post-traumatic stress disorder and other mental-health disturbances suffered by those returning from war, providing such training prior to deployment may buffer against potential lifelong psychological illness by bolstering working memory capacity.

In the several months prior to a deployment, service members receive intensive training on mission-critical operational skills, physical training and "stress-inoculation" training to habituate them to stressors they may experience during their impending mission. They also must psychologically prepare to leave loved ones and face potentially violent and unpredictable situations during their deployment.
Persistent and intensive demands, such as those experienced during high-stress intervals, have been shown to deplete working memory capacity and lead to cognitive failures and emotional disturbances.

The research team hypothesized that MMFT may mitigate these deleterious effects by bolstering working memory capacity.

Source:  University of Pennsylvania

See also: The Big Mo' - Momentum In Sports and Watching Sports Is Good For Your Brain

Team Building Does Not Bond

Team building activities in sport are carried out for tradition's sake and don't help players to bond, according to results of a new study presented April 16 at the British Psychological Society's Annual Conference in Stratford-Upon-Avon.

Research into initiation practices in sport by Dr Moira Lafferty, from the University of Chester, and Dr Caroline Wright, from Liverpool Hope University, reveals that there is no positive relationship between team building activities and better team cohesion.

Dr Lafferty explained: "Initiation ceremonies have often been described as "rites of passage' for new players joining sporting groups or teams. Despite attempts to eradicate inappropriate team building activities there is still evidence that they take place and are perceived to promote team cohesion."

The researchers examined the level of appropriate and inappropriate activities engaged in across a range of sports and then explored their relationship to team cohesion to discover whether differences exist between co-active sports, such as badminton, tennis and horse riding, and interactive sports such as football, rugby and cricket. The study involved surveying 100 athletes from across the country aged between 18 and 24.


The results showed little to suggest that team building activities, which can be as basic as having a meal together, helped significantly promote team unity.

"Our findings suggest that, despite there being no positive relationship to team cohesion, team building activities, both positive and negative, are still conducted," Dr Lafferty said.

"Interactive sports players are more likely to be subjected to inappropriate team building activities, which suggests that the idea of initiation may be embedded in the tradition of these teams and is seen as part of their cultures."

Source: British Psychological Society (BPS)

See also: Nobody Wants To Lose To The Underdog and Ending The Myth Of The Dumb Jock

Nobody Wants To Lose To The Underdog

Members of a group or team will work harder when they're competing against a group with lower status than when pitted against a more highly ranked group, according to a new study.

The results run contrary to the common belief that underdogs have more motivation because they have the chance to "knock the higher-status group down a peg," said Robert Lount, co-author of the study and assistant professor of management and human resources at Ohio State University's Fisher College of Business.  "We found over and over again across multiple studies that people worked about 30 percent harder when their group was competing against a lower-status group."

"It seems surprising to many people that the high-status team has more motivation, but it really makes sense," Lount added. "The higher-ranked group has more to lose if they don't compare well against a lower-status group. But if you're the lower-status group and lose to your superior rival, nothing has changed -- it just reaffirms the way things are."

Lount conducted the study with Nathan Pettit of Cornell University. Their results appear in the current issue of the Journal of Experimental Social Psychology.

The researchers conducted five studies involving college students. In most of the studies, the students were asked to complete a simple task -- for instance, crossing out all the vowels in a random string of letters. They were told to do as many as they could in a specific period of time.


Participants were told a group of students from another specific college were simultaneously completing the same task. The logo of the participants' school and the competing school appeared on their worksheets, so the fact that this was a competition was clear.

In some cases, the competing school was one that was clearly more highly ranked than the participants' school (based on U.S. News and World Report rankings), while other times it was similarly ranked, or ranked lower.

The tasks were always simple, so that the students' ability wouldn't be tested -- only their motivation to complete as much of the task as possible.  Overall, the students completed about 30 percent more when they were competing against lower-ranked schools than they did when competing against more highly ranked colleges.

"The motivation gains were there when students felt their group's superior status was threatened," he said.

He noted that students didn't perform worse when they were pitted against higher-ranked teams than they did against similarly ranked teams. But it was only when students competed against lower-ranked teams that they actually were motivated to work harder.  One of the studies clearly showed how participants were motivated by the threat of losing to a team they considered inferior.

In this study, before the students completed the task, they were asked to think and write about a core value of themselves or their group.  Some wrote a group affirmation, in which they selected the value that was most important to people at their university -- such as relationships with family or maintaining ethical standards. Others wrote a self-affirmation, in which they listed a core personal value and why it was central to who they were as an individual.

The affirmations are designed to make the participants feel secure in their group identity (the group affirmation) or feel like they are personally moral and competent (self affirmation). A control group did not write an affirmation.

When students competed against a lower-status group, those who completed self or group affirmations finished less of the task than those who did no affirmations.  Writing the affirmations made the students feel like they were good members of their group, or that their group itself was good. Because they no longer felt threatened, they didn't feel they had to work as hard to prove themselves when competing against the lower-ranked team.

"The affirmations act as a buffer against threat," Lount said.

Meanwhile, students in this study who competed against higher-ranked teams showed no difference in how much of the task they completed, regardless of whether they wrote affirmations or not.


The findings may apply in a variety of settings, from workplaces to sports teams.  Bosses and coaches who manage groups competing against lower-status rivals should use that fact to motivate the people at their company or team.

"If you're a coach of a favored team, it would make sense to highlight this favored status to your players," he said. "Coaches should let players know that there's a lot at stake in their game -- they could lose their high status. That should be a big motivating factor for your team."

In any setting, motivation will depend a lot on who people and groups are compared against.

"If groups just focus on ways to gain status, they're missing out on a motivational opportunity," he said. "People are going to work harder to not lose what status they already have than they will to try to become higher status."

See also: How Nerves Affect Soccer Penalty Kicks and The Big Mo' - Momentum In Sports

Source: Ohio State University

Soccer Referees Biased Against Tall Players

In this World Cup year, when football (soccer) passions are running high, supporters might be forgiven for objecting to every decision to award a foul against their team, made by referees. But they might also have a point. Researchers at Rotterdam School of Management, Erasmus University have researched all recorded fouls in three major football competitions over seven years. They discovered an ambiguous foul is more likely to be attributed to the taller of two players.

Dr. Niels van Quaquebeke and Dr. Steffen Giessner, scientists at Rotterdam School of Management, Erasmus University began their research by transferring their insights from decision making in business into the arena of sports. Specifically, they wanted to investigate whether people consider the available information in such ambiguous foul situations in an unbiased, i.e. subconsciously unprejudiced, way.

Based on evolutionary and linguistic research which has revealed that people associate the size of others with concepts such as aggression and dominance, Van Quaquebeke and Giessner speculated that ambiguous fouls are more likely to be attributed to the taller of two involved players. Results indicate that respectively taller people are more likely to be perceived by referees (and fans!) as foul perpetrators and their respectively smaller opponents as foul victims.

To put their assumption to a test, the scientists analysed all fouls recorded by Impire AG in seven seasons of UEFA Champions League (32,142 fouls) and German Bundesliga (85,262 fouls), the last three FIFA World Cups (6,440 fouls) as well as data from two additional perceptual experiments with football fans. For all seasons, leagues, and data collection methods, their analyses revealed the same picture confirming their initial assumption: taller people are indeed more often held accountable for fouls than shorter ones -- even when no actual foul was committed.

An article based on their research will be published in the Journal of Sport & Exercise Psychology in February 2010.

Van Quaquebeke said, "We chose football as the context of our studies because the sport often yields ambiguous foul situations in which it is difficult to determine the perpetrator. In such situations, people must rely on their 'instincts' to make a call, which should increase the use and thus the detectability of a player's height as an additional decision cue. Furthermore, the use of referee assistance technology and adequate referee training is frequently debated in association football. Thus, by providing scientific insights on potential biases in refereeing, our work might help officials weigh the options."

Both researchers say, however, that it is not their call how to derive conclusions for football practice.

Sources:   Erasmus University Rotterdam and "How embodied cognitions affect judgments: Height-related attribution bias in football foul calls"

For Exercise, Kids Do As Parents Say Not As They Do


According to a new study, there is no direct link between parents' own level of physical activity, and how much their child may exercise. In fact, parents' perceptions of their children's athleticism are what have a direct impact on the children's activity.

The study by Oregon State University researchers Stewart Trost and Paul Loprinzi, published in the journal Preventive Medicine, studied 268 children ages 2 to 5 in early childhood education centers in Queensland, Australia. Of these children, 156 parents or caregivers were surveyed on their parental practices, behaviors related to physical activity and demographic information.

What they found is that parents' level of physical activity is not directly associated with their children, but instead that the direct link was between parental support and a child's level of physical activity.

"Active parents may be more likely to have active children because they encourage that behavior through the use of support systems and opportunities for physical activity, but there is no statistical evidence that a child is active simply because they see that their parents exercise," Trost said.

Trost, who is director of the Obesity Prevention Research Core at the new Hallie Ford Center for Healthy Children and Families at OSU, is an international expert on the issue of childhood obesity.

His study found that parents who think their children have some sort of athletic ability were much more likely than other parents to provide instrumental and emotional support for young children to be physically active.

"I think this underscores the need for parents to provide emotional support, as well as opportunities for activity," Trost said. "Regardless of whether a child is athletic or is perceived to be physically gifted, all children need opportunities and encouragement of physical activity."

However, Trost said parental support of physical activity did not translate to a child's behavior once they were not in the home and were in a childcare setting. He said this adds to the body of research showing that both parents as well as childcare providers must provide support for physical activity.

Sources:  Oregon State University and Parental influences on physical activity behavior in preschool children, Preventive Medicine

For Rock Climbers, Endurance Is Key To Performance



The maximum time an athlete is able to continue climbing to exhaustion may be the only determinant of his/her performance. A new European study, led by researchers from the University of Granada, the objective of which is to help trainers and climbers design training programmes for this type of sport, shows this to be the case.


Until now, performance indicators for climbing have been low body fat percentage and grip strength. Furthermore, existing research was based on the comparison of amateur and expert climbers. Now, a new study carried out with 16 high-level climbers breaks with this approach and reveals that the time it takes for an athlete to become exhausted is the only indicator of his/her performance.

Vanesa España Romero was the first author of the work and is a researcher at the University of Granada.

The study, published in the European Journal of Applied Physiology, analyses the physiological parameters that determine performance in this sport at its highest level. The participants, eight women with an average rating of 7a (the scale of difficulty of a climbing route is graded from 5 to 9, with sub-grades of a, b and c) and eight men with an average rating of 8a, were divided into an "expert group" and an "elite group."

The researchers assessed the climbers with body composition tests (weight, height, body mass index, body fat %, bone mineral density, and bone mineral content), kinanthropometry (length of arms, hands and fingers, bone mineral density and bone mineral content of the forearm), and physical fitness tests (flexibility, strength of the upper and lower body and aerobic capacity measured at a climbing centre).

The results show there to be no significant differences between expert and elite climbers in any of the tests performed, except in climbing time to exhaustion and in bone mineral density, both of which were higher in the elite group. "Therefore, the maximum climbing time to exhaustion of an athlete is the sole determinant of performance," the researcher confirms.

Sport climbing began as a form of traditional climbing in the mid 80s, and is now a sport in its own right. The International Federation of Sport Climbing is currently requesting its inclusion as an Olympic sport.

The increase in the number of climbers and the proliferation of climbing centres and competitions have contributed to its interest in recent years, although there is limited scientific literature on climbing effort.

The most important research relates to energy consumption (ergospirometry, heart rate and lactic acid blood concentrations), the designation of maximum strength and local muscular resistance of climbers (dynamometry and electromyography), and to establishing anthropometric characteristics.

According to experts, a fundamental characteristic of sport climbing is its "vertical dimension," making it unique given its postural organisation in space, and from a physiological point of view, the effect a gravitational load has on movements.

In short, to complete a climb successfully, athletes should maintain their effort for as long as possible to improve their chances of reaching the ultimate goal.

Sources: FECYT - Spanish Foundation for Science and Technology and Climbing time to exhaustion is a determinant of climbing performance in high-level sport climbers. European Journal of Applied Physiology.

How Nerves Affect Soccer Penalty Kicks


Research by the University of Exeter shows for the first time the effect of anxiety on a soccer player's eye movements while taking a penalty.

The study shows that when penalty takers are anxious they are more likely to look at and focus on the centrally positioned goalkeeper. Due to the tight coordination between gaze control and motor control, shots also tend to centralise, making them easier to save. The research is now published in the December 2009 edition of the Journal of Sport and Exercise Psychology.

The researchers attribute this change in eye movements and focus to anxiety. Author Greg Wood, a PhD student in the University of Exeter’s School of Sport and Health Sciences said: “During a highly stressful situation, we are more likely to be distracted by any threatening stimuli and focus on them, rather than the task in hand. Therefore, in a stressful penalty shootout, a footballer’s attention is likely to be directed towards the goalkeeper as opposed to the optimal scoring zones (just inside the post). This disrupts the aiming of the shot and increases the likelihood of subsequently hitting the shot towards the goalkeeper, making it easier to save.”

For their study, the researchers focused on 14 members of the University of Exeter football team. They asked the players to perform two series of penalty shots. First, they were simply asked to do their best to score. The researchers made the second series more stressful and more akin to a penalty shoot-out. The players were told that the results would be recorded and shared with the other players and there would be a £50 prize for the best penalty taker.

The players wore special glasses which enabled the researchers to record precise eye movements and analyse the focus of each footballer’s gaze and the amount of time spent looking at different locations in the goal.

The results showed that when anxious, the footballers looked at the goalkeeper significantly earlier and for longer. This change in eye behaviour made players more likely to shoot towards the centre of the goal, making it easier for the keeper to save. The researchers believe that by being made aware of the impact of anxiety on eye movements, and the affect this has on the accuracy of a player’s shot, coaches could address this through training.

Greg Wood continues: “Research shows that the optimum strategy for penalty takers to use is to pick a spot and shoot to it, ignoring the goalkeeper in the process. Training this strategy is likely to build on the tight coordination between eye movements and subsequent actions, making for more accurate shooting. The idea that you cannot recreate the anxiety a penalty taker feels during a shootout is no excuse for not practicing. Do you think other elite performers don’t practice basic aiming shots in darts, snooker or golf for the same reasons? These skills need to be ingrained so they are robust under pressure”.

Source: University of Exeter: Anxiety, Attentional Control, and Performance Impairment in Penalty Kicks.

Tiger's Brain Is Bigger Than Ours

As Tiger Woods heads to Sawgrass for The Players Championship this weekend, mortal golfers wonder what's inside his head that keeps him winning. Well, chances are his brain actually has more gray matter than the average weekend duffer.

Researchers at the University of Zurich have found that expert golfers have a higher volume of the gray-colored, closely packed neuron cell bodies that are known to be involved with muscle control. The good news is that, like Tiger, golfers who start young and commit to years of practice can also grow their brains while their handicaps shrink.

Executing a good golf swing consistently is one of the hardest sport skills to master. Coordinating all of the moving body parts with the right timing requires a brain that has learned from many trial and error repetitions.

In fact, past studies have shown that the number of hours spent practicing is directly related to a golfer's handicap (a calculated number that represents recent playing ability).

Magic number
K. Anders Ericsson, a Florida State professor and the "expert on experts," has spent more than 25 years studying what it takes to become elite in any field, including sports.

The magic number that keeps recurring in Ericsson's studies is 10,000 hours of deliberate practice. If someone is willing to dedicate this amount of structured time on any skill, he has the potential to rise to the top.

Some critics argue that practice is good, but we all start with different levels of innate abilities that put some at an early advantage (i.e. the boy who is six feet tall in fourth grade) While that may be true, Ericsson does not want the rest of us to use that as an excuse. "The traditional assumption is that people come into a professional domain, have similar experiences, and the only thing that's different is their innate abilities," he said in an interview with Fast Company. "There's little evidence to support this. With the exception of some sports, no characteristic of the brain or body constrains an individual from reaching an expert level."

So, what happens to the brain after all of that practice?

In the new study, a team led by neuropsychologist Lutz Jäncke compared the brain images of 40 men divided into four groups based on their experience as golfers. They recruited ten professional golfers (with handicaps of 0), ten advanced golfers (handicaps between 1 and 14), ten average golfers (handicaps between 15 and 36) and ten volunteers who had never played golf (not even mini-golf!).
Interviews revealed the "practice makes perfect" correlation between hours of practice and lower handicaps.

Brain scans (functional Magnetic Resonance Imaging (fMRI) showed that, indeed, there were structural differences, but not in the linear pattern they imagined. While significant differences existed in total volume of gray matter between the pros and the non-players, there was little difference between the pro and the advanced groups or between the average and non-players groups.

When the researchers combined the pros and the advanced golfers into one group called "expert," and the average and non-players into a second group called "novice," a clear dividing line emerged, showing that practice produces a noticeable step up in the brain's gray matter. This jump comes somewhere between 800-3,000 practice hours.

The results were detailed last month in the online journal PLoS ONE.

Step 1: Grow the brain
Another interesting twist is that the pros reported practicing five to eight times more than the advanced group, while the advanced group practiced only twice as much as the average group.

Yet the big jump in gray matter came after golfers achieved a skill level below a 15 handicap, moving from average to advanced. This is consistent with another study in 2008 that measured gray matter volume in students learning to juggle three balls. After learning to juggle for the first time, their gray matter increased. However, once that initial concept was learned, more advanced juggling tricks did not grow more brain cells.

It's been a long time since Tiger's handicap was 15, so clearly the additional years of practice were necessary to reach the top.  And, all of that gray has produced a lot of green.

Please visit my other sports science stories at LiveScience.com

Runners Pace Themselves Into The Zone

Most regular runners can tell you when they reach that perfect equilibrium of speed and comfort. The legs are loose, the heart is pumping and it feels like you could run at this pace forever.

Researchers at the University of Wisconsin-Madison now have an explanation for this state of running nirvana, and we can thank our ancestors and some evolutionary biology for it.

For years, it has been thought that humans have a constant metabolic energy rate. It was assumed that you would require the same total energy to run one mile, no matter if you ran it in 5 minutes or 10 minutes. Even though your energy burn rate would be higher at faster speeds, you would get there in half the time.

Turns out, however, that each person has an optimal running pace that uses the least amount of oxygen to cover a given distance. The findings, by Karen Steudel, a zoology professor at Wisconsin, and Cara Wall-Scheffler of Seattle Pacific University, are detailed in latest online edition of the Journal of Human Evolution.

Steudel's team tested both male and female runners at six different speeds on a treadmill while measuring their oxygen intake and carbon dioxide output. As expected, each runner had different levels of fitness and oxygen use but there were ideal speeds for each runner that required the least amount of energy

Overall, the optimal speeds for the group were about 8.3 mph (about a 7:13 minutes per mile) for males and 6.5 mph (9:08 min/mile) for females.

The most interesting finding: At slower speeds, about 4.5 mph (13 min/mile), the metabolic efficiency was at its lowest. Steudel explains that at this speed, halfway between a walk and a jog, the runner's gait can be awkward and unnatural.

"What that means is that there is an optimal speed that will get you there the cheapest," Steudel says.

So, why is a zoology professor studying running efficiency? Steudel's previous work has tried to build a theory of why our early ancestors evolved from moving on four limbs to two limbs, also known as bipedalism. She has found that human walking is a more efficient method of getting from point A to point B than on all fours. It might also have been an advantage for hunting.
This latest research could offer some more clues of how we moved on to running. Steudel explains, "This is a piece in the question of whether walking or running was more important in the evolution of the body form of the genus Homo."

Please visit my other sports science articles on LiveScience.

The Cognitive Benefits Of Being A Sports Fan

When was the last time you listened to a sporting event on the radio? If given a choice between watching the game on a big screen HD or turning on the AM radio, most of us would probably choose the visual sensation of television.

But, for a moment, think about the active attention you need in order to listen to a radio broadcast and interpret the play-by-play announcer's descriptions. As you hear the words, your "mind's eye" paints the picture of the action so you can imagine the scene and situations. Your knowledge of the game, either from playing it or watching it for years helps you understand the narrative, the terms and the game's "lingo".

Now, imagine that you are listening to a broadcast about a sport you know nothing about. Hearing Bob Uecker say, "With two out in the ninth, the bases are loaded and the Brewers' RBI leader has two strikes. The infield is in as the pitcher delivers. Its a hard grounder to third that he takes on the short hop and fires a bullet to first for the final out." If you have no baseball-specific knowledge, those sentences are meaningless.

However, for those of us that have grown up with baseball, that description makes perfect sense and our mind's eye helped us picture the scene. That last sentence about the "hard grounder" and the thrown "bullet" may have even triggered some unconscious physical movements by you as your brain interpreted those action phrases. That sensorimotor reaction is at the base of what is called "embodied cognition".

Sian Beilock, associate professor of psychology and leader of the Human Performance Lab at the University of Chicago, defined the term this way: "In contrast to traditional views of the mind as an abstract information processor, recent work suggests that our representations of objects and events are grounded in action. That is, our knowledge is embodied, in the sense that it consists of sensorimotor information about potential interactions that objects or events may allow."

She cites a more complete definition of the concept in Six Views of Embodied Cognition by Margaret Wilson. Another terrific overview of the concept is provided by science writer Drake Bennet of the Boston Globe in his article, "Don't Just Stand There, Think".

In a recent study, "Sports Experience Changes the Neural Processing of Action Language", Dr. Beilock's team continued their research into the link between our learned motor skills and our language comprehension about those motor skills. Since embodied cognition connects the body with our cognition, the sports domain provides a logical domain to study it.
Their initial look at this concept was in a 2006 study where the team designed an experiment to compare the knowledge representation skill of experienced hockey players and novices. Each group first read sentences describing both hockey-related action and common, "every-day" action, (i.e. "the referee saw the hockey helmet on the bench" vs. "the child saw the balloon in the air"). They were then shown pictures of the object mentioned in the sentences and were asked if the picture matched the action in the sentence they read.

Both groups, the athletes and the novices, responded equally in terms of accuracy and response time to the everyday sentences and pictures, but the athletes responded significantly faster to the hockey-specific sentences and pictures. The conclusion is that those with the sensorimotor experience of sport give them an advantage of processing time over those that have not had that same experience.


This may seem pretty obvious that people who have played hockey will respond faster to sentence/picture relationships about hockey than non-hockey players. But the 2006 study set the groundwork for Beilock's team to take the next step with the question, "is there any evidence that the athletes are using different parts of their brain when processing these match or no match decisions?" The link between our physical skill memory and our language comprehension would be at the base of the embodied cognition theory. 


So, in the latest research, the HPL team kept the same basic experimental design, but now wanted to watch the participants' brain activity using fMRI scanning. This time, there were three groups, hockey players, avid fans of hockey and novices who had no playing or viewing experience with hockey at all. First, all groups passively listened to sentences about hockey actions and also sentences about everyday actions while being monitored by fMRI.  Second, outside of the fMRI scanner, they again listened to hockey-related and everyday-related action sentences and then were shown pictures of hockey or every day action and asked if there was a match or mis-match between the sentence and the picture.


This comprehension test showed similar results as in 2006, but now the team could try to match the relative skill in comprehension to the neural activity shown in the fMRI scans when listening. Both the players and the fans showed increased activity in the left dorsal premotor cortex, a region thought to support the selection of well-learned action plans and procedures. 


You might be surprised that the fans' brains showed activity in the same regions as the athletes. We saw this effect in a previous post, "Does Practice Make Perfect", where those that practiced a new dance routine and those that only watched it showed similar brain area activity. On the other side, the total novices showed activity in the bilateral primary sensory-motor cortex, an area typically known for carrying out step by step instructions for new or novel tasks. 


When playing or watching, we are actually calling on additional neural networks in our brains to help our normal language comprehension abilities. In other words, the memories of learned actions are linked and assist other cognitive tasks. That sounds pretty much like the definition of embodied cognition and Dr. Beilock's research has helped that theory take another step forward. Beilock added, "Experience playing and watching sports has enduring effects on language understanding by changing the neural networks that support comprehension to incorporate areas active in performing sports skills."


So, take pride in your own brain the next time you hear, "Kobe dribbles the ball to the top of the key, crosses over, drives the lane, and finger rolls over Duncan for two." If you can picture that play in your mind, your left dorsal premotor cortex just kicked into gear!


Take Your Brain To The Gym


The moment of truth has arrived, again. The holidays have passed, the bowl games are over and you have renewed your annual New Year's resolution to get back into shape... for real. Don't worry, you are not alone. According to the Centers for Disease Control (CDC), 63 percent of Americans have a Body Mass Index (BMI) in excess of 25 (defined as overweight), while a quarter are greater than 30 (obese).

Its not just kids that benefit from exercise. As we get older, those extra pounds start to affect other areas of our health, contributing to the onset of diabetes, hypertension and high cholesterol.

Several new studies in the last month have now built stronger links between our levels of physical activity and the health of our most important body part, the brain. Conditions such as dementia, Parkinson's, Alzheimer's and even mild age-related memory loss can be delayed by regular physical activity.

Shrinking brain

According to John Ratey, clinical associate professor of psychiatry at Harvard Medical School and author of "Spark: the revolutionary new science of exercise and the brain" (2008, Little, Brown), "Age happens. Getting older is unavoidable, but falling apart is not."

Starting at age 40, we lose about 5 percent of our brain volume per decade, but then at age 70 other conditions may start to accelerate the deterioration. As we age, our cells are less able to cope with stress from waste products such as free radicals.

In the brain, as this stress claims more neuron cells, the web of interconnections between neurons weakens. As we each have more than one hundred billion neurons with each having oodles of connections to other neurons, this gradual net loss is not as dramatic, at first. However, as we age, if this neurodegenerative process accelerates, then our general focus and memory loss as well as more serious conditions like Alzheimer's may appear.

What the aging brain needs is a pumped-up blood flow. Exercise-induced neurotrophins such as brain-derived neurotropic factor (BDNF), vascular endothelial growth factor (VEGF), as well as the neurotransmitter dopamine are needed to grow and fertilize new and existing neurons and their synapse connections. Ratay calls BDNF "Miracle-Gro for the brain."

Make new brain cells

Researchers at the National Cheng Kung University Medical College in Taiwan recently tested the effects of BDNF in the brains of mice of different ages. Half were trained to run a maze for 1 hour a day for exercise, while the control group did not exercise.

As expected, the researchers first found that neurogenesis, the creation of new neuron cells in the brain, dropped of dramatically in the middle-aged mice compared with younger mice. They also were able to conclude that exercise significantly slows down the loss of new nerve cells in the middle-aged mice.

Production of neural stem cells improved by approximately 200 percent compared to the middle-aged mice that did not exercise.

Increase blood flow

OK, that was mice. What about humans?  University of North Carolina brain researchers recently found that older adult humans who regularly exercised had increased blood flow in their brains. They compared long-time exercisers with sedentary adults using 3D MRI brain-scanning techniques.

"The active adults had more small blood vessels and improved cerebral blood flow," said the study's senior author, J. Keith Smith, associate professor of radiology at UNC School of Medicine. "These findings further point out the importance of regular exercise to healthy aging."

The research builds on a host of other studies, summarized in an August review, that show a balanced diet and regular exercise can protect the brain and ward off mental disorders.

Helps manage glucose

Finally, in a report released last month, Scott A. Small, associate professor of neurology at Columbia University Medical Center, found that levels of blood sugar (glucose) have a direct effect on blood flow in the brain.

By testing 240 elderly volunteers, and using functional magnetic resonance imaging (fMRI), Small and his colleagues found a correlation between elevated blood glucose levels and decreased cerebral blood flow, in the dentate gyrus, an area in the brain's hippocampus that has a direct effect on our memories. This corresponds with Smith's findings by showing that exercise may help manage glucose levels, which will improve blood flow to the brain.

Small's previous imaging studies have shown that physical exercise causes an improvement in dentate gyrus function.

"By improving glucose metabolism, physical exercise also reduces blood glucose" Small said. "We have a behavioral recommendation — physical exercise."

Please visit my other articles on Livescience.com

Kids Who Exercise Can Get Better Grades

The end of 2008 brings some discouraging news about our kids' brains and brawn. Recent results from an international math and science test show United States students are performing near the middle of the pack compared to other countries, while their levels of obesity continue to climb.
Historically, these two trends were studied independently with plans of action developed for each. However, several researchers and a new book have been making the case for linking these two problems by showing the effects of aerobic exercise not only on a student's fitness level but also on their test scores.

Last month, the latest (2007) TIMSS (Trends in International Mathematics and Science Study) scores were released. They compare fourth grade students from 36 countries and eighth grade students from 48 countries. They were tested on subjects that were common to all of the countries, including algebra, geometry, chemistry and physics. Overall, 425,000 students participated in the test, which is administered every four years.
In math, American fourth graders came in at 11th place of the 36 countries while eighth graders scored ninth out of 48. Hong Kong and Taiwan ranked first for fourth grade and eighth grade, respectively.  In science, Singapore topped the list for both fourth grade and eighth grade, with U.S. science students taking eighth place and 11th place.
While the American math scores have improved slightly, the science scores have dropped. In 2003, U.S. fourth graders were in sixth place in the world and eighth graders were in ninth place.
Only 6 percent of U.S. eighth-grade students reached the TIMSS "advanced" level in math, compared to 45 percent of students in Chinese Taipei, 40 percent in Korea, 40 percent in Singapore, 31 percent in Hong Kong, 26 percent in Japan and 10 percent in Hungary.
Regarding student fitness, the most recent figures from the Centers for Disease Control and Prevention report that the percentage of overweight or obese 6- to 11-year-olds has tripled since 1980, with more than 125 million children at unhealthy levels.
Leaping backward
Ironically, one of the solutions proposed for raising test scores, No Child Left Behind, encourages schools to focus more of the school day on the core academic subjects while reducing class time in peripheral subjects, like art, music, and physical education.  In fact, only 6 percent of American high schools offer a daily gym class. Yet a 2002 Virginia Tech study showed no relationship between reduced class time in those subjects and higher overall standardized tests.
In his latest book, "Spark: The Revolutionary New Science of Exercise and the Brain" (2008, Little, Brown), John Ratey, a Harvard clinical associate professor of psychiatry, argues for more physical fitness for students as a cure for not only their obesity but also their academic performance.
"I cannot underestimate how important regular exercise is in improving the function and performance of the brain." Ratey writes. "Exercise stimulates our gray matter to produce Miracle-Gro for the brain." That "Miracle-Gro" is a brain chemical called brain-derived neurotropic factor, or BDNF. When we exercise, our working muscles send chemicals into our bloodstream, including a protein known as IGF-1.
Once in the brain, IGF-1 orders the production of more BDNF. The additional BDNF helps new neurons and their connections grow. In addition, levels of other neurotransmitters are increased after a strenuous exercise session.
"Dopamine, serotonin, norepinephrine — all of these are elevated after exercise," says Ratey. "So having a workout will help focus, calming down, and impulsivity — it’s like taking a little bit of Prozac and a little bit of Ritalin."
Evidence mounts
Research showing a link between fitness and academics is growing. The California Department of Education (CDE) looked for a correlation between fitness scores and test scores. They found that kids who were deemed fit (by a standard test of aerobic capacity, BMI, abdominal strength, trunk strength, upper body strength and overall flexibility) scored twice as well on academic tests as those that were unfit.  In the second year of the study, socio-economic status was taken into account, to possibly eliminate that variable as an explanation. As expected, those in the upper-income brackets scored better overall on the academic tests, but within the lower-income set of students, the same results were observed — kids who were more fit performed better academically.
Charles Hillman, associate professor of kinesiology at the University of Illinois, was able to duplicate these findings with 259 third and fifth-grade Illinois students. His team also noticed that two of the tests, BMI and aerobic capacity, were significantly more influential to higher academic scores than the other four fitness factors. Digging deeper, he isolated two groups of 20 students, one fit and the other unfit. They were given cognitive tests of attention, working memory and processing speed while their brain's electrical activity was being measured by an electroencephalogram (EEG) test.
The fit kids’ brains showed more activity in the prefrontal cortex, known for its executive function and control over other brain processes.
So, just send the kids on a fast jog and they will ace all of their tests?  Not quite.
“The exercise itself doesn’t make you smarter, but it puts the brain of the learners in the optimal position for them to learn,” Ratey said. “There’s no way to say for sure that improves learning capacity for kids, but it certainly seems to correlate to that."

Please visit my other articles on Livescience.com

Related Stories:
Athletic Gene ACTN3 = "All Children Test Newborn To 3"?
Sideline Raging Soccer Moms (and Dads!)
Does Practice Make Perfect?

How Should Cheating Be Defined In Sports?


When Milwaukee Brewers pitcher Chris Capuano reports for spring training in April, he will be anxious to demonstrate the effects of a performance-enhancing off-season. His brain will benefit from a sharper focus while his throwing arm will boast an extra boost that has been missing since 2006. Stimulants? Steroids? Scandal? No need to panic, he just had LASIK surgery for his eyes and "Tommy John" surgery for his injured elbow. Of course, had he chosen amphetamines to improve his focus or steroids to increase his strength, he would have been banned and berated. 

Society Decides
There is confusion over the means and methods athletes have available to enhance their performance. Certainly, corrective eye surgery to raise your vision level to 20/20 seems fair, but many athletes go into the procedure hoping to come out with enhanced 20/15 or 20/10 eyesight. Replacing a damaged elbow ligament with a tendon doesn't seem like cheating, but what if its done on a healthy elbow hoping for a few more miles per hour on a fastball that has faded over the years?

Earlier this month, a commentary in the journal Nature recommended a fresh look at cognitive-enhancing drugs and where to draw the line in the sand between natural performance and enhanced performance. The authors, an esteemed group of neuroscientists and ethicists, argued that "enhanced" is only defined by the rules set by society.
Certainly, abuse of prescription drugs, such as Ritalin and Adderall, is illegal because of the potential, harmful side effects. Still, reports of the rising use of these drugs by college students and professionals show the demand for options beyond nutrition, exercise and sleep.
These drugs are just the first generation of possible brain boosting supplements, which is why the Nature commentators are calling for an organized, stigma-free approach to evaluating the risks, benefits and ethics of future products.

Even in Major League Baseball, there is mounting evidence that cognitive-enhancing drugs may be on the rise. Since MLB banned amphetamines in 2006, there has been a dramatic rise in the number of therapeutic use exemptions issued to players for attention-deficit disorder diagnoses, for which drugs like Ritalin and Adderall can be legitimately prescribed. In 2006, 28 players applied for the exemption, while a year later there were 103. There is suspicion that many of these ADD diagnoses are just excuses to get the pills.


Legal Jolt

So, what if there was a cognitive-enhancing, sports supplement that increased alertness, concentration, reaction time and focus while also decreasing the perception of muscle fatigue? Even more encouraging, this supplement is sold in millions of outlets and is socially accepted worldwide. It comes in three sizes, tall, grande or venti – coffee. More specifically, caffeine has been the subject of many recent studies of its effectiveness, both cognitively and physiologically.

Earlier this year, Dr. Carrie Ruxton completed a literature survey to summarize 41 double-blind, placebo-controlled trials published over the past 15 years to establish what range of caffeine consumption would maximize benefits and minimize risk for cognitive function, mood, physical performance and hydration. The studies were divided into two categories, those that looked at the cognitive effects and those that looked at physical performance effects.
The results concluded that there was a significant improvement in cognitive functions like attention, reaction time and mental processing as well as physical benefits described as increased "time to exhaustion" and decreased "perception of fatigue" in cycling and running tests.

Given these results, how exactly does caffeine perform these wonderful tricks? Dr. Ruxton explains from the study, "Caffeine is believed to impact on mood and performance by inhibiting the binding of both adenosine and benzodiazepine receptor ligands to brain membranes. As these neurotransmitters are known to slow down brain activity, a blockade of their receptors lessens this effect."
Bottom line, the chemicals in your brain that would cause you to feel tired are blocked, giving you a feeling of ongoing alertness. This pharmacological process is very similar to that of the ADD drugs.

If caffeine is such a clear cut performance enhancing supplement, why did the World Anti-Doping Agency (WADA) first add caffeine to its banned substance list, only to remove it in 2004? At the time that it was placed on the banned list, the threshold for a positive caffeine test was set to a post-exercise urinary caffeine concentration of about 3-4 cups of strong coffee.
However, more recent research has shown that caffeine has ergogenic effects at levels as low as the equivalent of 1-2 cups of coffee. So, it was hard for WADA to know where to draw the line between athletes just having a few morning cups of coffee/tea and those that were intentionally consuming caffeine to increase their performance level.

So, if Chris Capuano has a double espresso before pitching, his brain, eyes and arm should enhance his performance in the game.  Is that an unfair advantage? Science will continue to offer new and improved methods for raising an athlete's game above the competition. Players, league officials and fans will have to decide where to draw the line.

Please visit my other articles on Livescience.com

Why Pro Athletes Attract Trouble



From the "athletes behaving badly" department (in the past month, anyway):
•    NHL bad boy (Sean Avery) was suspended for six games for a crude remark.
•    Six NFL players were suspended for allegedly violating the league's drug policy.
•    Another NFL player (Adam "Pacman" Jones) returned to his team's roster after being suspended, again, for an off-field altercation.
•    Oh, and NFL receiver (Plaxico Burress) accidentally shot himself in a nightclub with a gun he was not licensed to carry. 

Despite the 24/7 media coverage of each of these incidents, sports fans have become accustomed to and somewhat complacent with hearing about athletes and their deviant acts.
In fact, new statistics reveal that bad behavior is clearly evident among high school athletes, particularly in high-contact sports.

It starts young
Besides the highly publicized stories, there are thousands more across the nation involving amateur athletes taking risks both on and off the field. From performance-enhancing supplements to referee/official abuse to fights, guns and recorded crimes, the image of sports as a positive influence on athletes may need a second look.

Granted, in a population of any size there will be a few bad apples. However, these actions have become so prevalent that academic researchers have created a branch of study called "deviance in sports" attached to the sports sociology tree. 

They are asking questions and challenging some assumptions about cause and effect. Is there a connection between sports participation and deviance? Does the intense competition and battle on the field shape a player's off-the-field lifestyle? Since success in sports brings attention and prestige to athletes, does the risk of losing that status cause a need to take risks to maintain their "top dog" positions?

In their new book, "Deviance and Social Control in Sport," researchers Michael Atkinson and Kevin Young emphasize the confusing environment surrounding athletes. They describe two types of deviance: wanted and unwanted.

Owners, players and fans may know that certain behaviors are literally against the rules but are at the same time appreciated as a sign of doing whatever it takes to win.  Performance-enhancing drugs are not allowed in most sports, but athletes assume they will improve their performance, which helps their team win and keeps fans happy. Fights in hockey will be, according to the rule book, penalized, but this deviance is assumed to be wanted by fans and teammates as a sign of loyalty.

However, related bad behavior can quickly turn on a player to being socially unwanted. 

Abuse of drugs that don't contribute to a win, (marijuana, cocaine, alcohol), will transform that same player into a villain with shock and outrage being reported in the media. In the Sean Avery example, a hockey player fighting to defend his teammates on the ice can then be suspended from the team and criticized by those same teammates for an off-color remark.

Real statistics
Most athletes who make it to the professional level have been involved in sports since youth. Sports sociologists and psychologists often look at the early development years of athletes to get a glimpse of patterns, social norms and influences that contribute to later behaviors.

In a recent American Sociological Review article, Derek Kreager, assistant professor of sociology at Penn State University, challenged the long-held belief that youth sports participation is exclusively beneficial to their moral character development. 

With the focus on teaching teamwork, fair play, and self esteem, sports are often cited as the antidote to delinquency. But Kreager notes that other studies have looked at the culture that surrounds high school and college athletes and identified patterns of clichés, privileges and attitudes of superiority. For some athletes, these patterns are used to justify deviant behavior.

In fact, his most recent research attempted to find a cause-and-effect link between deviant behavior and specific sports. Specifically, he asked if high-contact, physical sports like football and wrestling created athletes who were more prone to violent behavior off the field.

Using data from the National Longitudinal Study of Adolescent Health, more than 6,000 male students from across 120 schools were included. The data set included a wide collection of socioeconomic information, including school activities, risk behaviors and at-home influences. Kreager's study analyzed the effects of three team sports (football, basketball, and baseball) and two individual sports (wrestling and tennis) on the likelihood of violent off-field behavior, specifically, fighting.

To isolate the effect of each sport, the study included control groups of non-athletes and those that had a history of physical violence prior to playing sports. 

For team sports, football players were 40 percent more likely to be in a confrontation than non-athletes. In individual sports, wrestlers were in fights 45 percent more often, while tennis players were 35 percent less likely to be in an altercation. Basketball and baseball players showed no significant bias either way.

"Sports such as football, basketball, and baseball provide players with a certain status in society," Kreager said. "But football and wrestling are associated with violent behavior because both sports involve some physical domination of the opponent, which is rewarded by the fans, coaches and other players. Players are encouraged to be violent outside the sport because they are rewarded for being violent inside it."

Please visit my other articles on Livescience.com

Hockey Hits Are Hurting More


One painful lesson every National Hockey League rookie learns is to keep your head up when skating through the neutral zone. If you don't, you will not see the 4700 joules of kinetic energy skating at you with bad intentions.
During an October 25th game, Brandon Sutter, rookie center for the Carolina Hurricanes, never saw Doug Weight, veteran center of the New York Islanders, sizing him up for a hit that resulted in a concussion and an overnight stay in the hospital.  Hockey purists will say that it was a "clean hit" and Weight was not penalized.

Six days before that incident, the Phoenix Coyotes' Kurt Sauer smashed Andrei Kostitsyn of the Montreal Canadiens into the sideboards. Kostitsyn had to be stretchered off of the ice and missed two weeks of games with his concussion. Sauer skated away unhurt and unpenalized. See video here.

Big hits have always been part of hockey, but the price paid in injuries is on the rise. According to data released last month at the National Academy of Neuropsychology's Sports Concussion Symposium in New York, 759 NHL players have been diagnosed with a concussion since 1997. For the ten seasons studied, that works out to about 76 players per season and 31 concussions per 1,000 hockey games. During the 2006-07 season, that resulted in 760 games missed by those injured players, an increase of 41% from 2005-06. Researchers have found two reasons for the jump in severity, the physics of motion and the ever-expanding hockey player.
In his book, The Physics of Hockey, Alain Haché, professor of physics at Canada's University of Moncton, aligns the concepts of energy, momentum and the force of impact to explain the power of mid-ice and board collisions.
As a player skates from a stop to full speed, his mass accelerates at an increasing velocity. The work his muscles contribute is transferred into kinetic energy which can and will be transferred or dissipated when the player stops, either through heat from the friction of his skates on the ice, or through a transfer of energy to whatever he collides with, either the boards or another player.
The formula for kinetic energy, K = (1/2)mass x velocity2, represents the greater impact that a skater's speed (velocity) has on the energy produced. It is this speed that makes hockey a more dangerous sport than other contact sports, like football, where average player sizes are larger but they are moving at slower speeds (an average of 23 mph for hockey players in full stride compared to about 16 mph for an average running back in the open field).
So, when two players collide, where does all of that kinetic energy go? First, let's look at two billiard balls, with the exact same mass, shape and rigid structure. When two balls collide on the table, we can ignore the mass variable and just look at velocity. If the ball in motion hits another ball that is stationary, then the ball at rest will receive more kinetic energy from the moving ball so that the total energy is conserved. This will send the stationary ball rolling across the table while the first ball almost comes to a stop as it has transferred almost all of its stored energy.
Unfortunately, when human bodies collide, they don't just bounce off of each other. This "inelastic" collision results in the transfer of kinetic energy being absorbed by bones, tissues and organs. The player with the least stored energy will suffer the most damage from the hit, especially if that player has less "body cushion" to absorb the impact.
To calculate your own real world energy loss scenario, visit the Exploratorium's "Science of Hockey" calculator. For both Sutter and Kostitsyn, they received checks from players who outweighed them by 20 pounds and were skating faster.
The average mass and acceleration variables are also growing as today's NHL players are getting bigger and faster. In a study released in September, Art Quinney and colleagues at the University of Alberta tracked the physiological changes of a single NHL team over 26 years, representing 703 players. Not surprisingly, they found that defensemen are now taller and heavier with higher aerobic capacity while forwards were younger and faster. Goaltenders were actually smaller with less body mass but had better flexibility. However, the increase in physical size and fitness did not correspond with team success on the ice. But the checks sure hurt a lot more now. 
Please visit my other articles on Livescience.com

Baseball Brains - Fielding Into The World Series

With the crack of the bat, the ball sails deep into the outfield. The center-fielder starts his run back and to the right, trying to keep his eyes on the ball through its flight path. His pace quickens initially, then slows down as the ball approaches. He arrives just in time to make the catch. What just happened? How did he know where to run and at what speed so that he and the ball intersected at the same exact spot on the field. Why didn't he sprint to the landing spot and then wait for the ball to drop, instead of his controlled speed to arrive just when the ball did? What visual cues did he use to track the ball's flight?  Did Willie Mays make the most famous catch in baseball history because he is one of the greatest players of all-time with years of practice? Maybe, but now take a look at this "Web Gems" highlight video of 12 and 13 year-olds from last year's Little League World Series:

Just like we learned in pitching and hitting, fielding requires extensive mental abilities involving eyes, brain, and body movements to accomplish the task. Some physical skills, such as speed, do play a part in catching, but its the calculations and estimating that our brain has to compute that we often take for granted. The fact that fielders are not perfect in this skill, (there are dropped fly balls, or bad judgments of ball flight), begs the question of how to improve? As we saw with pitching and hitting (and most sports skills), practice does improve performance. But, if we understand what our brains are trying to accomplish, we can hopefully design more productive training routines to use in practice.

Once more, we turn to Mike Stadler, associate professor of psychology at University of Missouri, who provides a great overview of current fielding research in his book, "The Psychology of Baseball".

One organization that does not take this skill for granted is NASA. The interception of a ballistic object in mid-flight can describe a left fielder's job or an anti-missile defense system or how a pilot maneuvers a spacecraft through a three dimensional space. In fact, Michael McBeath , a former post doctoral fellow at the NASA Ames Research Center, (now an associate professor at Arizona State University), has been studying fly ball catching since 1995, beginning with his research study, "How baseball outfielders determine where to run to catch fly ball". 

His team developed a rocket-science like theory named Linear Optical Trajectory to describe the process that a fielder uses to follow the path of a batted ball. LOT says the fielder will adjust his movement towards the ball so that its trajectory follows a straight line through his field of vision. Rather than compute the landing point of the ball, racing to that spot and waiting, the fielder uses the information provided by the path of the ball to constantly adjust his path so that they intersect at the right time and place.

The LOT theory is an evolution from an earlier theory called Optical Acceleration Cancellation (OAC) that had the same idea but only explained the fielder's tracking behavior in the vertical dimension. In other words, as the ball leaves the bat the fielder watches the ball rise in his field of vision. If he were to stand still and the ball was hit hard enough to land behind him, his eyes would track the ball up and over his head, or at a 90 degree angle. If the ball landed in front of him, he would see the ball rise and fall but his viewing angle may not rise above 45 degrees. LOT and OAC argue that the fielder repositions himself throughout the flight of the ball to keep this viewing angle between 0 and 90 degrees. If its rising too fast, he needs to turn and run backwards. If the viewing angle is low, then the fielder needs to move forward so that the ball doesn't land in front of him. He can't always make to the landing spot in time, but keeping the ball at about a 45 degree angle by moving will help ensure that he gets there in time. While OAC explained balls hit directly at a fielder, LOT helps add the side-to-side dimension, as in our example of above of a ball hit to the right of the fielder.  More recently, McBeath has successfully defended his LOT theory here and here.

The OAC and LOT theories do agree on a fundamental cognitive science debate. There are two theories of how we perceive the world and then react to it. First, the Information Processing (IP) theory likens our brain to a computer in that we have inputs, our senses that gather information about the world, a memory system that stores all of our past experiences and lessons learned, and a "CPU" or main processor that combines our input with our memory and computes the best answer for the given problem. So, IP would say that the fielder sees the fly ball and offers it to the brain as input, the brain then pulls from memory all of the hundreds or thousands of fly ball flight paths that have been experienced, and then computes the best path to the ball's landing point based on what it has "learned" through practice. McBeath's research and observations of fielders has shown that the processing time to accomplish this task would be too great for the player to react.

OAC and LOT subscribe to the alternate theory of human perception, Ecological Psychology (EP). EP eliminates the call to memory from the processing and argues that the fielder observes the flight path of the ball and can react using the angle monitoring system. This is still up for debate as the IPers would argue "learned facts" like what pitch was thrown, how a certain batter hits those pitches, how the prevailing wind will affect the ball, etc. And, with EP, how can the skill differences between a young ballplayer and an experienced major leaguer be accounted for? What is the point of practice, if the trials and errors are not stored/accessed in memory?

Of course, we haven't mentioned ground balls and their behavior, due to the lack of research out there. The reaction time for a third baseman to snare a hot one-hopper down the line is much shorter. This would also argue in favor of EP, but what other systems are involved?

Arguing about which theory explains a fielder's actions is only productive if we can apply the research to create better drills and practices for our players. The LOT theory seems to be  getting there as an explanation, but there is still debate over EP vs. IP . So many sport skills rely on some of these foundations, that this type of research will continue to be relevant.  As with pitching and hitting, fielding seems to improve with practice.

And then there's the ultimate catch of all-time, that baseball fans have long been buzzing about.  Your reward for getting to the end of this article is this little piece of history...




You were looking for Willie Mays and "The Catch", weren't you?  This ball girl would own the best all-time fielding achievement... if it were real.  But no, just another digital editing marvel.  This was going to be a commercial for Gatorade, then it was put on the shelf.  After it was leaked onto YouTube, the video hoax became a viral hit.  So much so, that Gatorade left it on YouTube and did make a commercial out of it for the 2008 All-Star game.  But, you don't need to tell your Little Leaguers.  Let them dream...

The Big Mo' - Momentum In Sports

A player can feel it during a game when they hit a game-changing home run or when they go 0 for 4 at the plate. A team can feel it when they come back from a deficit late in the game or when their lead in the division vanishes. A fan can feel it as their team "catches fire" or goes "as cold as ice". And, play-by-play announcers love to talk about it. 

We know it as the "Big Mo", the "Hot Hand", and being "In The Zone" while the psychologists call it Psychological Momentum. But, does it really exist? Is it just a temporary shift in confidence and mood or does it actually change the outcome of a game or a season? As expected, there are lots of opinions available.

The Oxford Dictionary of Sports Science defines psychological momentum as, "the positive or negative change in cognition, affect, physiology, and behavior caused by an event or series of events that affects either the perceptions of the competitors or, perhaps, the quality of performance and the outcome of the competition. Positive momentum is associated with periods of competition, such as a winning streak, in which everything seems to ‘go right’ for the competitors. In contrast, negative momentum is associated with periods, such as a losing streak, when everything seems to ‘go wrong’." 


The interesting phrase in this definition is that Psychological Momentum (PM) "affects either the perceptions of the competitors or, perhaps, the quality of performance and the outcome of the competition." Most of the analyses on PM focus on the quantitative side to try to prove or disprove PM's affect on individual stats or team wins and losses.

Regarding PM in baseball, a Wall St. Journal article looked at last year's MLB playoffs, only to conclude there was no affect on postseason play coming from team momentum at the end of the regular season. More recently, Another Cubs Blog also looked at momentum into this year's playoffs including opinion from baseball stats guru, Bill James, another PM buster. For basketball, Thomas Gilovich's 1985 research into streaky, "hot hand" NBA shooting is the foundation for most of today's arguments against the existence of PM, or at least its affect on outcomes.

This view that if we can't see it in the numbers, more than would be expected, then PM does not exist may not capture the whole picture. Lee Crust and Mark Nesti have recommended that researchers look at psychological momentum more from the qualitative side. Maybe there are more subjective measures of athlete or team confidence that contribute to success that don't show up in individual stats or account for teams wins and losses. 


As Jeff Greenwald put it in his article, Riding the Wave of Momentum, "The reason momentum is so powerful is because of the heightened sense of confidence it gives us -- the most important aspect of peak performance. There is a term in sport psychology known as self-efficacy, which is simply a player's belief in his/her ability to perform a specific task or shot. Typically, a player’s success depends on this efficacy. During a momentum shift, self-efficacy is very high and players have immediate proof their ability matches the challenge. As stated earlier, they then experience subsequent increases in energy and motivation, and gain a feeling of control. In addition, during a positive momentum shift, a player’s self-image also changes. He/she feels invincible and this takes the "performer self" to a higher level."

There would seem to be three distinct areas of focus for PM; an individual's performance within a game, a team's performance within a game and a team's performance across a series of games. So, what are the relationships between these three scenarios? Does one player's scoring streak or key play lift the team's PM, or does a close, hard-fought team win rally the players' morale and confidence for the next game? 


Seeing the need for a conceptual framework to cover all of these bases, Jim Taylor and Andrew Demick created their Multidimensional Model of Momentum in Sports, which is still the most widely cited model for PM. Their definition of PM, "a positive or negative change in cognition, affect, physiology, and behavior caused by an event or series of events that will result in a commensurate shift in performance and competitive outcome", leads to the six key elements to what they call the "momentum chain".

First, momentum shifts begin with a "precipitating event", like an interception or fumble recovery in football or a dramatic 3-point shot in basketball. The effect that this event has on each athlete varies depending on their own perception of the game situation, their self-confidence and level of self-efficacy to control the situation.

Second, this event leads to "changes in cognition, physiology, and affect." Again, depending on the athlete, his or her base confidence will determine how strongly they react to the events, to the point of having physiological changes like tightness and panic in negative situations or a feeling of renewed energy after positive events.

Third, a "change in behavior" would come from all of these internal perceptions. Coaches and fans would be able to see real changes in the style of play from the players as they react to the positive or negative momentum chain.

Fourth, the next logical step after behavior changes is to notice a "change in performance." Taylor and Demick note that momentum is the exception not the norm during a game. Without the precipitating event, there should not be noticeable momentum shifts.

Fifth, for sports with head to head competition, momentum is a two-way street and needs a "contiguous and opposing change for the opponent." So, if after a goal, the attacking team celebrates some increased PM, but the defending team does not experience an equal negative PM, then the immediate flow of the game should remain the same. Its only when the balance of momentum shifts from one team to the other. Levels of experience in athletes has been shown to mitigate the effects of momentum, as veteran players can handle the ups and downs of a game better than novices.

Finally, at the end of the chain, if momentum makes it that far, there should be an immediate outcome change. When the pressure of a precipitating event occurs against a team, the players may begin to get out of their normal, confident flow and start to overanalyze their own performance and skills. We saw this in Dr. Sian Beilock's research in our article, Putt With Your Brain - Part 2. As an athlete's skills improve they don't need to consciously focus on them during a game. But pressure brought on by a negative event can take them out of this "automatic" mode as they start to focus on their mechanics to fix or reverse the problem. 


As Patrick Cohn, a sport psychologist, pointed out in a recent USA Today article on momentum, "You stop playing the game you played to be in that position. And the moment you switch to trying not to screw up, you go from a very offensive mind-set to a very defensive mind-set. If you're focusing too much on the outcome, it's difficult to play freely. And now they're worried more about the consequences and what's going to happen than what they need to do right now."


There is no doubt that we will continue to hear references to momentum swings during games. When you do, you can conduct your own mini experiment and watch the reactions of the players and the teams over the next section of the game to see if that "precipitating event" actually leads to a game-changing moment.

ResearchBlogging.org


Jim Taylor, Andrew Demick (1994). A multidimensional model of momentum in sports Journal of Applied Sport Psychology, 6 (1), 51-70 DOI: 10.1080/10413209408406465

Retirement Rebound - The Return of Torres, Favre and Armstrong

Maybe its the fear of turning 40. Maybe its the feeling of unfinished business. Maybe its the fire in the belly that has not quite extinguished. For retired elite athletes, the itch is always there to make a return after experiencing "life after sport". For some, it becomes too strong to ignore. 

This year has seen the return of at least three champions, Dara Torres, Lance Armstrong and Brett Favre. As they explain their individual reasons for coming back, some similarities emerge that have more to do with psychological needs than practical needs. In a recent Miami Herald article, Torres explained her comeback to competitive swimming at age 41, "For me, it's not like I sat around and watched swimming on TV and thought, `Oh, I wish I was still competing'. It was more gradual. But all of a sudden, something goes off inside you and you start seriously thinking about a comeback. You'd think the competitive fire would die down with maturity, but I've actually gotten worse. I wasn't satisfied with silver medals. I hate to lose now more than I did in my 20s. I'm still trying to figure out why.''

Drawing inspiration from Torres, Lance Armstrong has decided to make a comeback at age 37 with a declared goal to win his eighth Tour de France. In a recent Vanity Fair article, he described his rationale, “Look at the Olympics. You have a swimmer like Dara Torres. Even in the 50-meter event [freestyle], the 41-year-old mother proved you can do it. The woman who won the marathon [Constantina Tomescu-Dita, of Romania] was 38. Older athletes are performing very well. Ask serious sports physiologists and they’ll tell you age is a wives’ tale. Athletes at 30, 35 mentally get tired. They’ve done their sport for 20, 25 years and they’re like, I’ve had enough. But there’s no evidence to support that when you’re 38 you’re any slower than when you were 32."

Is it the 40 factor? Brett Favre, who turns 39 in October, made his well-publicized return to the NFL last month wanting to return so badly that he accepted a trade to the New York Jets so that he could play. His public and emotional decision to retire in March, only to begin hinting at a comeback in early summer showed the internal struggle he had with stepping away from sports. 


You could hear the indecision in his retirement press conference, "I've given everything I possibly can give to this organization, to the game of football, and I don't think I've got anything left to give, and that's it.", Favre said. "I know I can play, but I don't think I want to. And that's really what it comes down to. Fishing for different answers and what ifs and will he come back and things like that, what matters is it's been a great career for me, and it's over. As hard as that is for me to say, it's over. There's only one way for me to play the game, and that's 100 percent. Mike and I had that conversation the other night, and I will wonder if I made the wrong decision. I'm sure on Sundays, I will say I could be doing that, I should be doing that. I'm not going to sit here like other players maybe have said in the past that I won't miss it, because I will. But I just don't think I can give anything else, aside from the three hours on Sundays, and in football you can't do that. It's a total commitment, and up to this point I have been totally committed." 

Some observers point to the end of the Packers' 2007-2008 season with a heart-wrenching Favre interception in overtime that sent the Giants to the Super Bowl instead of Green Bay. Being that close to the pinnacle of his sport must have been confidence that his skills had not diminished and once the fatigue of the past season had passed (by about June), that he was not ready to just ride the tractor in Mississippi for the next 40 years.

So, what do the sport psychologists make of these second thoughts? These three athletes are world famous, but what about the hundreds of professional athletes that have had to make the same decision without all of the front page stories and fanfare? Why does Chris Chelios, all-star and future Hall of Famer in the NHL, continue to avoid the retirement decision at age 45? 


Coaches aren't immune either. Bobby Bowden of Florida State and Joe Paterno of Penn State have refused to retire to the point of becoming an awkward story for their schools and fans. ''After all the adulation and excitement wear off and elite athletes come face to face with retirement and a more mundane life, they suffer a sense of loss, almost like a death,'' said sport psychologist John F. Murray. "If you're Lance Armstrong, you realize that what you are is a cyclist, that is your identity, and if you feel you have one or two more titles in you, why let it go? Why not tackle unresolved challenges? Competing at that level provides a high that is hard to match. How can you not be addicted to that?''

Beyond the professional ranks, thousands of college and Olympic athletes are left with the realization that they face similar decisions of when to "give up the dream" and move into the more practical world of finishing their education and finding a job. Their emotional attachment to their sport has developed over years of building an identity linked to their success on the field. 


Despite the statistics showing the "funnel effect" of the diminishing number of athletes getting to the "next level", younger athletes continue to believe they are the ones that will make it to the top. There is also the more emotional issue of unwillingly leaving a sport because of injury or simply not making the team due to diminished skills. Dr. Murray adds, "When your whole life has been geared toward athletic excellence, the prospects of retirement can be dreadful! This is commonplace at collegiate level where 99 per cent of the athletes do not go on to play their sport professionally. Counseling is a way to prepare athletes for the inevitable loss that occurs after the glory is over and only memories remain. As with any loss, people need effective ways to cope. Going at it all on your own might work for some, but I’ll submit that the vast majority of athletes benefit from early discussion and planning for retirement. There is definitely life after sport."

Some colleges and universities, as well as some professional teams, have started to offer formal "retirement planning" for athletes as their formal sport careers wind down. Life After Sports, a counseling firm started by Adrian McBride, a former college and NFL player, provides services to retiring college athletes to help them emotionally and practically adjust to a post-sports life. The University of North Carolina has set-up the Center for the Study of Retired Athletes to offer a home for academic research into these issues.

Additional academic research is also coming out on athlete retirement including two articles this year (see citations below) from the Journal of Applied Sport Psychology. First, Katie Warriner and David Lavallee of the University of Wales interviewed former elite gymnasts regarding their retirement at a relatively young age from competitive sport. They found the loss of identity to be the biggest adjustment. Second, Patricia Lally and Gretchen Kerr looked at how parents cope with their children's "retirement" from sport, as they also go through withdrawl symptoms when the "end of the dream" finally comes and the lifelong ambition for their child's athletic success is over.

Who's next up for a retirement rebound? Just as Lance got inspiration from Torres and maybe Favre, the trend may continue. The Bulls could use Jordan or Pippen and Roger Clemens is never far away from a phone. Stay tuned!

ResearchBlogging.org



Katie Warriner, David Lavallee (2008). The Retirement Experiences of Elite Female Gymnasts: Self Identity and the Physical Self Journal of Applied Sport Psychology, 20 (3), 301-317 DOI: 10.1080/10413200801998564

Patricia Lally, Gretchen Kerr (2008). The Effects of Athlete Retirement on Parents Journal of Applied Sport Psychology, 20 (1), 42-56 DOI: 10.1080/10413200701788172

Putt With Your Brain - Part 2

If there is a poster child sport for our favorite phrase, "Sports Are 80 Percent Mental", it must be golf. Maybe its the slow pace of play that gives us plenty of time to think between shots. Maybe its the "on stage" performance feeling we get when we step up to that first tee in front of our friends (or strangers!) Maybe its the "high" of an amazing approach shot that lands 3 feet from the cup followed by the "low" of missing the birdie putt. 

From any angle, a golf course is the sport psychologist's laboratory to study the mix of emotions, confidence, skill execution and internal cognitive processes that are needed to avoid buying rounds at the 19th hole. Last time, we looked at some of the recent research on putting mechanics, but, as promised, we now turn to the mental side of putting. Sian Beilock and her team at the University of Chicago's Human Performance Lab recently released the latest of a string of research studies on sports performance, or more specifically, how not to choke under pressure. Lucky for us, they chose putting as their sport skill of choice. This ties in with Dr. Beilock's theory of embodied cognition that we featured in Watching Sports Is Good For Your Brain.

An underlying theme to this work is the concept of automaticity, or the ability to carry out sport skills without consciously thinking about them. Performing below expectations (i.e. choking) starts when we allow our minds to step out of this automatic mode and start thinking about the steps to our putting stroke and all of those "swing thoughts" that come with it ("keep your elbows in", "head down", "straight back").


Our brain over analyzes and second-guesses the motor skills we have learned from hundreds of practice putts. Previously, we looked at automaticity in other sports. Of course, a key distinction to the definition of choking is that you are playing "well below expectations". If you normally shoot par, but now start missing easy putts, then there may be distractions that are taking you out of your normal flow. Choking implies a temporary and abnormal event. Automaticity theory would claim that it is these distractions from some perceived pressure to perform that are affecting your game.

Most research into sport skill performance divides the world into two groups, novices and experts. Most sports have their own measures of where the dividing line is between these groups. Expertise would imply performance results not just experience. So, a golfer who has been hacking away for 20 years but still can't break 100 would still be put in the "novice" category.


Sport scientists design experiments that compare performance between the groups given some variables, and then hypothesize on the reason for the observed differences. Beilock, et al have looked at golf putting from several different angles over the years. Their research builds on itself, so let's review in reverse chronological order.

Back in 2001, they began by comparing the two competing theories of choking, distraction theory vs. explicit monitoring theory, and designed a putting experiment to find the better explanation. Distraction theory explains choking by assuming that the task of putting requires your direct attention and that high pressure situations will cause you to perform dual tasks - focus on your putting but also think about the pressure. This theory assumes there is no automaticity in skill learning and that we have to focus our attention on the skill every time.


Explicit monitoring theory claims that over time, as we practice a skill to the point of becoming an "expert", we proceduralize the task so that it becomes "automatic". Then, during a high pressure situation, our brain becomes so concerned about performance that it takes us out of automatic mode and tries to focus on each step of the task. The research supported the explicit monitoring theory as it was shown that the golf putting task was affected by distractions and pressure for the experts but not the novice putters.

So, how do we block out the pressure, so that our automaticity can kick in? Another 2001 study by Beilock looked at mental imagery during putting. Using the same explicit monitoring theory, should we try to think positive thoughts, like "this ball is going in the hole" or "I have made this putt many times"? Also, what happens if a stray negative thought, "don't miss this one!" enters our brain? Should we try to suppress it and replace it with happy self-talk? She set up four groups, one receiving positive comments, one receiving negative comments, one receiving negative comments followed by positive comments and one receiving none as a control group.


As expected, the happy people did improve their putting over the course of the trials, while the negative imagery hurt performance. But, the negative replaced with positive thought group did not show any more improvement over the control group. So, when faced with a high pressure, stressful situation ripe with the possibilities of choking, try to repeat positive thoughts, but don't worry too much if the occasional doubt creeps in.

Our strategy towards putting should also vary depending on our current skill level. While learning the intricacies of putting, novices should use different methods than experts, according to a 2004 study by Beilock, et al. Novice golfers need to pay attention to the step by step components of their swing, and they perform better when they do focus on the declarative knowledge required. 


Expert golfers, however, have practiced their swing or putt so often that it has become "second nature" to the point that if they are told to focus on the individual components of their swing, they perform poorly. The experiment asked both novices and expert golfers to first focus on their actual putting stroke by saying the word "straight" when hitting the ball and to notice the alignment of the putter face with the ball. Next, they were asked to putt while also listening for a certain tone played in the background. When they heard the tone they were to call it out while putting. 

The first scenario, known as "skill-focused", caused the novices to putt more accurately but the experts to struggle. The second scenario, called "dual-task", distracted the novices enough to affect their putts, while the experts were not bothered and their putting accuracy was better. Beilock showed that novices need the task focus to succeed while they are learning to putt, while experts have internalized the putting stroke so that even when asked to do two things, the putting stroke can be put on "auto-pilot".

Finally, in 2008, Beilock's team added one more twist to this debate. Does a stress factor even affect a golfer's performance in their mind before they putt? This time, golfers, divided into the usual novice and expert groups, were asked to first imagine or "image execute" themselves making a putt followed by an actual putt. The stress factor was to perform one trial under a normal, "take all the time you need" time scenario and then another under a speeded or time-limited scenario. 


The novices performed better under the non-hurried scenario in imagining the putt first followed by the actual putt. The experts, however, actually did better in the hurried scenario and worse in the relaxed setting. Again, the automaticity factor explains the differences between the groups.

The bottom line throughout all of these studies is that if you're learning to play golf, which includes putting, you should focus on your swing/stroke but beware of the distractions which will take away your concentration. That seems pretty logical, but for those that normally putt very well, if you feel stress to sink that birdie putt, don't try to focus in on the mechanics of your stroke. Trust the years of experience that has taught your brain the combination of sensorimotor skills of putting.

Just remember the Chevy Chase/Ty Webb philosophy; "I'm going to give you a little advice. There's a force in the universe that makes things happen. And all you have to do is get in touch with it, stop thinking, let things happen, and be the ball.... Nah-na-na-na, Ma-na-na-na...."


ResearchBlogging.orgSian L. Beilock, Thomas H. Carr (2001). On the fragility of skilled performance: What governs choking under pressure? Journal of Experimental Psychology: General, 130 (4), 701-725 DOI: 10.1037//0096-3445.130.4.701

Sian L. Beilock; James A. Afremow; Amy L. Rabe; Thomas H. Carr (2001). "Don't Miss!" The Debilitating Effects of Suppressive Imagery on Golf Putting Performance Journal of Sport and Exercise Psychology, 23 (3)

Beilock S.L.; Bertenthal B.I.; McCoy A.M.; Carr T.H. (2004). Haste does not always make waste: Expertise, direction of attention, and speed versus accuracy in performing sensorimotor skills Psychonomic Bulletin & Review, 11 (2), 373-379

Sian Beilock, Sara Gonso (2008). Putting in the mind versus putting on the green: Expertise, performance time, and the linking of imagery and action The Quarterly Journal of Experimental Psychology, 61 (6), 920-932 DOI: 10.1080/17470210701625626

Imagine Winning Gold In Beijing

Imagine winning a gold medal at the Beijing Olympics.  No really, go ahead, close your eyes and visualize it.  What did you see?  Were you standing on the medal platform looking out at the crowd, waving and taking in the scene through your own eyes, or were you a spectator in the crowd watching yourself getting the medal put around your neck?  This choice between "first-person" or "third-person" visualization actually makes a difference on our motivation to achieve a future goal.


Noelia A. Vasquez, at York University and Roger Buehler, at Wilfrid Laurier University wanted to see if there was a link between our visualization perspective and our motivation level to achieve the imagined goal.  They asked 47 university students to imagine the successful completion of a performance task that was in their near future, whether it be a speech in a class or an upcoming athletic competition.  They were also asked to assume that the task went extremely well.  One group of students were asked to imagine this scene "through their own eyes" seeing the environment as they would actually experience it.  The second group was told to use the third-person perspective, pretending they were "in the crowd" watching themselves as others would see them achieving this goal.  Next, they were given a survey that asked each group how motivated they were to now go make this successful scene a reality. 


As hypothesized, the group that saw the scene through their audience's eyes (third-person) ranked their motivation to now succeed significantly higher than those that imagined it through their own eye (first-person).  The authors' explanation for this is the perceived additional importance attached to the task when we consider other peoples' opinion of us and our natural desire to increase our status in our peer group.  Seeing this newly elevated social acceptance and approval of ourselves from the eyes of our peers motivates us even more to reach for our goals.


The road to achievements like an Olympic gold medal is a long one with many steps along the way.  Over the years, as athletes maintain their training regimen, they can keep imagining the future goal, but they may need to also look back and recognize the improvements they have made over time.  This "progress to date" assessment will also provide motivation to keep going once they realize the hard work is actually having the desired effect and moving them along the desired path.  So, as they review their past to present progress, does the first or third person perspective make a difference there as well?



Researchers from Cornell, Yale and Ohio State, led by Thomas Gilovich, professor of psychology at Cornell, designed an experiment to find out.  They recruited a group of university students who had described their high-school years as "socially awkward" to now recall those years and compare them with their social skill in college.  The first group was asked to recall the past from a first-person perspective, just as their memories would provide them.  The second group was asked to remember themselves through the perspective of their classmates (third-person).  Next, each group was asked to assess the personal change they had accomplished since then.


As predicted, the group that had recalled their former selves in the third person reported greater progress and change towards a more social and accepted person in college than the group that remembered in the first-person.  "We have found that perspective can influence your interpretation of past events. In a situation in which change is likely, we find that observing yourself as a third person -- looking at yourself from an outside observer's perspective -- can help accentuate the changes you've made more than using a first-person perspective," says Gilovich.  "When participants recalled past awkwardness from a third-person perspective, they felt they had changed and were now more socially skilled," said Lisa K. Libby, an assistant professor of psychology at Ohio State University. "That led them to behave more sociably and appear more socially skilled to the research assistant."


So, whether looking forward or backward, seeing yourself through other's eyes seems to provide more motivation to not only continue the road to success, but to appreciate the progress you have made. 


Then the actual day of competition arrives.  It is one hour before you take your position on the starting blocks at the "Bird's Nest" stadium in Beijing or on the mat at the National Indoor Stadium for the gymnastics final.  Should you be imagining the medal ceremony and listening to your country's national anthem at that point?  In a recent Denver Post article, Peter Haberl, senior sports psychologist for the U.S. Olympic Committee says, "It takes a great deal of ability and skill to stay focused on the task at hand."  

He distinguishes between an "outcome" goal, (receiving the medal) and "performance" (improving scores/times) and "process" (improving technique) goals.  "The difference is that these types of goals are much more under the control of the athlete," explains Haberl. "The process goal, in particular, directs attention to the here and now, which allows the athlete to totally focus on the doing of the activity; this is key to performing well.  This sounds simple but it really is quite difficult because the mind takes you to the past and the future all the time, particularly in the Olympic environment with its plethora of distractions and enticing rewards." 


Mental imagery is a well-known tool for every athlete to make distant and difficult goals seem attainable.  By seeing your future accomplishments through the eyes of others, you can attach more importance and reward to achieving them.  Just imagine yourself in London in 2012!

ResearchBlogging.org

Vasquez, N.A. (2007). Seeing Future Success: Does Imagery Perspective Influence Achievement Motivation?. Personality and Social Psychology Bulletin, 33(10), 1392-1405.


Libby, L.K., Eibach, R.P., Gilovich, T. (2005). Here's Looking at Me: The Effect of Memory Perspective on Assessments of Personal Change.. Journal of Personality and Social Psychology, 88(1), 50-62. DOI: 10.1037/0022-3514.88.1.50